BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38171174)

  • 1. Towards a better understanding of atmospheric water harvesting (AWH) technology.
    Wang M; Liu E; Jin T; Zafar SU; Mei X; Fauconnier ML; De Clerck C
    Water Res; 2024 Feb; 250():121052. PubMed ID: 38171174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorbent-coupled radiative cooling and solar heating to improve atmospheric water harvesting.
    Huang Y; Li Q; Chen Z; Chen M
    J Colloid Interface Sci; 2024 Feb; 655():527-534. PubMed ID: 37952456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption-Based Atmospheric Water Harvesting: Impact of Material and Component Properties on System-Level Performance.
    LaPotin A; Kim H; Rao SR; Wang EN
    Acc Chem Res; 2019 Jun; 52(6):1588-1597. PubMed ID: 31090396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives.
    Lu H; Shi W; Guo Y; Guan W; Lei C; Yu G
    Adv Mater; 2022 Mar; 34(12):e2110079. PubMed ID: 35122451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemistries and materials for atmospheric water harvesting.
    Lei C; Guan W; Zhao Y; Yu G
    Chem Soc Rev; 2024 Jun; ():. PubMed ID: 38896434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-Property Relationships of Hydrogel-based Atmospheric Water Harvesting Systems.
    Feng A; Shi Y; Onggowarsito C; Zhang XS; Mao S; Johir MAH; Fu Q; Nghiem LD
    ChemSusChem; 2024 Jun; 17(11):e202301905. PubMed ID: 38268017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholipid Bilayer Inspired Sandwich Structural Nanofibrous Membrane for Atmospheric Water Harvesting and Selective Release.
    Yu Z; Li S; Zhang J; Tang C; Qin Z; Liu X; Zhou Z; Lai Y; Fu S
    Nano Lett; 2024 Feb; 24(8):2629-2636. PubMed ID: 38349527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sandwich-Structured Carbon Paper/Metal-Organic Framework Monoliths for Flexible Solar-Powered Atmospheric Water Harvesting On Demand.
    Tao Y; Wu Q; Huang C; Su W; Ying Y; Zhu D; Li H
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10966-10975. PubMed ID: 35179350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar-Powered Sustainable Water Production: State-of-the-Art Technologies for Sunlight-Energy-Water Nexus.
    Li Z; Xu X; Sheng X; Lin P; Tang J; Pan L; Kaneti YV; Yang T; Yamauchi Y
    ACS Nano; 2021 Aug; 15(8):12535-12566. PubMed ID: 34279074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistically Enabling Fast-Cycling and High-Yield Atmospheric Water Harvesting with Plasma-Treated Magnetic Flower-Like Porous Carbons.
    Ying Y; Yang G; Tao Y; Wu Q; Li H
    Adv Sci (Weinh); 2023 Jan; 10(3):e2204840. PubMed ID: 36424187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green Synthesis of Polyurethane Sponge-Grafted Calcium Alginate with Carbon Ink Aerogel with High Water Vapor Harvesting Capacity for Solar-Driven All-Weather Atmospheric Water Harvesting.
    Liu CH; Xu L; Wang ZY; Han SJ; Fu ML; Yuan B
    Langmuir; 2024 Jul; ():. PubMed ID: 38946296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels.
    Song Y; Xu N; Liu G; Qi H; Zhao W; Zhu B; Zhou L; Zhu J
    Nat Nanotechnol; 2022 Aug; 17(8):857-863. PubMed ID: 35618801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Solar-Driven Water Harvesting from Arid Air with Metal-Organic Frameworks Modified by Hygroscopic Salt.
    Xu J; Li T; Chao J; Wu S; Yan T; Li W; Cao B; Wang R
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5202-5210. PubMed ID: 31943677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured Hybrid Hydrogels for Solar-Driven Clean Water Harvesting from the Atmosphere.
    Uddin MN; Rab MF; Islam AKMN; Asmatulu E; Rahman MM; Asmatulu R
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption-Based Atmospheric Water Harvesting: Materials, Components, Systems, and Applications.
    Entezari A; Esan OC; Yan X; Wang R; An L
    Adv Mater; 2023 Oct; 35(40):e2210957. PubMed ID: 36869587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathways to Energy-efficient Water Production from the Atmosphere.
    Feng Y; Wang R; Ge T
    Adv Sci (Weinh); 2022 Dec; 9(36):e2204508. PubMed ID: 36285671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-Day Multicyclic Atmospheric Water Harvesting Enabled by Polyelectrolyte Hydrogel with Hybrid Desorption Mode.
    Shan H; Poredoš P; Ye Z; Qu H; Zhang Y; Zhou M; Wang R; Tan SC
    Adv Mater; 2023 Sep; 35(35):e2302038. PubMed ID: 37199373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile Power-to-Water Battery for Energy Storage, Atmospheric Water Harvesting, and Humidity Control.
    Lin H; Li F; Sui Y; Sui Z; Ding Z; Xie S; Zhai C; Wu W
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36107-36116. PubMed ID: 37477364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal atmospheric water harvesting yield and water quality using electric-powered desiccant and compressor dehumidifiers.
    Mulchandani A; Edberg J; Herckes P; Westerhoff P
    Sci Total Environ; 2022 Jun; 825():153966. PubMed ID: 35183644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting.
    Lei C; Guo Y; Guan W; Lu H; Shi W; Yu G
    Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202200271. PubMed ID: 35089612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.