BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38171254)

  • 1. Rethinking automatic segmentation of gross target volume from a decoupling perspective.
    Shi J; Wang Z; Ruan S; Zhao M; Zhu Z; Kan H; An H; Xue X; Yan B
    Comput Med Imaging Graph; 2024 Mar; 112():102323. PubMed ID: 38171254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepTarget: Gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy.
    Jin D; Guo D; Ho TY; Harrison AP; Xiao J; Tseng CK; Lu L
    Med Image Anal; 2021 Feb; 68():101909. PubMed ID: 33341494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network.
    Guo Z; Guo N; Gong K; Zhong S; Li Q
    Phys Med Biol; 2019 Oct; 64(20):205015. PubMed ID: 31514173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning for segmentation of the cervical cancer gross tumor volume on magnetic resonance imaging for brachytherapy.
    Rodríguez Outeiral R; González PJ; Schaake EE; van der Heide UA; Simões R
    Radiat Oncol; 2023 May; 18(1):91. PubMed ID: 37248490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning based automatic internal gross target volume delineation from 4D-CT of hepatocellular carcinoma patients.
    Yang Z; Yang X; Cao Y; Shao Q; Tang D; Peng Z; Di S; Zhao Y; Li S
    J Appl Clin Med Phys; 2024 Jan; 25(1):e14211. PubMed ID: 37992226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HFCF-Net: A hybrid-feature cross fusion network for COVID-19 lesion segmentation from CT volumetric images.
    Wang Y; Yang Q; Tian L; Zhou X; Rekik I; Huang H
    Med Phys; 2022 Jun; 49(6):3797-3815. PubMed ID: 35301729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the performance of a deep learning-based lung gross tumour volume segmentation algorithm before and after transfer learning in a new hospital.
    Kulkarni C; Sherkhane U; Jaiswar V; Mithun S; Mysore Siddu D; Rangarajan V; Dekker A; Traverso A; Jha A; Wee L
    BJR Open; 2024 Jan; 6(1):tzad008. PubMed ID: 38352184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel LVPA-UNet network for target volume automatic delineation: An MRI case study of nasopharyngeal carcinoma.
    Zhang Y; Xu HR; Wen JH; Hu YJ; Diao YL; Chen JL; Xia YF
    Heliyon; 2024 May; 10(10):e30763. PubMed ID: 38770315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-task deep learning model for EGFR genotyping prediction and GTV segmentation of brain metastasis.
    Zhou Z; Wang M; Zhao R; Shao Y; Xing L; Qiu Q; Yin Y
    J Transl Med; 2023 Nov; 21(1):788. PubMed ID: 37936137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic gross tumor segmentation of canine head and neck cancer using deep learning and cross-species transfer learning.
    Groendahl AR; Huynh BN; Tomic O; Søvik Å; Dale E; Malinen E; Skogmo HK; Futsaether CM
    Front Vet Sci; 2023; 10():1143986. PubMed ID: 37026102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning.
    Rundo L; Stefano A; Militello C; Russo G; Sabini MG; D'Arrigo C; Marletta F; Ippolito M; Mauri G; Vitabile S; Gilardi MC
    Comput Methods Programs Biomed; 2017 Jun; 144():77-96. PubMed ID: 28495008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning-based framework (Co-ReTr) for auto-segmentation of non-small cell-lung cancer in computed tomography images.
    Kunkyab T; Bahrami Z; Zhang H; Liu Z; Hyde D
    J Appl Clin Med Phys; 2024 Mar; 25(3):e14297. PubMed ID: 38373289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MS-TCNet: An effective Transformer-CNN combined network using multi-scale feature learning for 3D medical image segmentation.
    Ao Y; Shi W; Ji B; Miao Y; He W; Jiang Z
    Comput Biol Med; 2024 Mar; 170():108057. PubMed ID: 38301516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully Automated 3D Cardiac MRI Localisation and Segmentation Using Deep Neural Networks.
    Vesal S; Maier A; Ravikumar N
    J Imaging; 2020 Jul; 6(7):. PubMed ID: 34460658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CFANet: Context Feature Fusion and Attention Mechanism Based Network for Small Target Segmentation in Medical Images.
    Cao R; Ning L; Zhou C; Wei P; Ding Y; Tan D; Zheng C
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based internal gross target volume definition in 4D CT images of lung cancer patients.
    Ma Y; Mao J; Liu X; Dai Z; Zhang H; Zhang X; Li Q
    Med Phys; 2023 Apr; 50(4):2303-2316. PubMed ID: 36398404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Efficient Semi-Supervised Framework with Multi-Task and Curriculum Learning for Medical Image Segmentation.
    Wang K; Wang Y; Zhan B; Yang Y; Zu C; Wu X; Zhou J; Nie D; Zhou L
    Int J Neural Syst; 2022 Sep; 32(9):2250043. PubMed ID: 35912583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TGDAUNet: Transformer and GCNN based dual-branch attention UNet for medical image segmentation.
    Song P; Li J; Fan H; Fan L
    Comput Biol Med; 2023 Dec; 167():107583. PubMed ID: 37890420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature interaction network based on hierarchical decoupled convolution for 3D medical image segmentation.
    Shen L; Zhang Y; Wang Q; Qin F; Sun D; Min H; Meng Q; Xu C; Zhao W; Song X
    PLoS One; 2023; 18(7):e0288658. PubMed ID: 37440581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HPFG: semi-supervised medical image segmentation framework based on hybrid pseudo-label and feature-guiding.
    Li F; Jiang A; Li M; Xiao C; Ji W
    Med Biol Eng Comput; 2024 Feb; 62(2):405-421. PubMed ID: 37875739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.