These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 38171928)
1. SGCAST: symmetric graph convolutional auto-encoder for scalable and accurate study of spatial transcriptomics. Li J; Wang J; Lin Z Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38171928 [TBL] [Abstract][Full Text] [Related]
2. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Dong K; Zhang S Nat Commun; 2022 Apr; 13(1):1739. PubMed ID: 35365632 [TBL] [Abstract][Full Text] [Related]
3. Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks. Shi X; Zhu J; Long Y; Liang C Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544658 [TBL] [Abstract][Full Text] [Related]
4. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering. Peng L; He X; Peng X; Li Z; Zhang L Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898 [TBL] [Abstract][Full Text] [Related]
5. BiGATAE: a bipartite graph attention auto-encoder enhancing spatial domain identification from single-slice to multi-slices. Tao Y; Sun X; Wang F Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38385877 [TBL] [Abstract][Full Text] [Related]
6. Graph deep learning enabled spatial domains identification for spatial transcriptomics. Liu T; Fang ZY; Li X; Zhang LN; Cao DS; Yin MZ Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080761 [TBL] [Abstract][Full Text] [Related]
7. A graph self-supervised residual learning framework for domain identification and data integration of spatial transcriptomics. Huang J; Fu X; Zhang Z; Xie Y; Liu S; Wang Y; Zhao Z; Peng Y Commun Biol; 2024 Sep; 7(1):1123. PubMed ID: 39266614 [TBL] [Abstract][Full Text] [Related]
8. DeepST: identifying spatial domains in spatial transcriptomics by deep learning. Xu C; Jin X; Wei S; Wang P; Luo M; Xu Z; Yang W; Cai Y; Xiao L; Lin X; Liu H; Cheng R; Pang F; Chen R; Su X; Hu Y; Wang G; Jiang Q Nucleic Acids Res; 2022 Dec; 50(22):e131. PubMed ID: 36250636 [TBL] [Abstract][Full Text] [Related]
9. High-density generation of spatial transcriptomics with STAGE. Li S; Gai K; Dong K; Zhang Y; Zhang S Nucleic Acids Res; 2024 May; 52(9):4843-4856. PubMed ID: 38647109 [TBL] [Abstract][Full Text] [Related]
10. Graph attention automatic encoder based on contrastive learning for domain recognition of spatial transcriptomics. Wang T; Zhu H; Zhou Y; Ding W; Ding W; Han L; Zhang X Commun Biol; 2024 Oct; 7(1):1351. PubMed ID: 39424696 [TBL] [Abstract][Full Text] [Related]
11. Deciphering spatial domains from spatially resolved transcriptomics with Siamese graph autoencoder. Cao L; Yang C; Hu L; Jiang W; Ren Y; Xia T; Xu M; Ji Y; Li M; Xu X; Li Y; Zhang Y; Fang S Gigascience; 2024 Jan; 13(1):. PubMed ID: 38373745 [TBL] [Abstract][Full Text] [Related]
12. A multi-view graph contrastive learning framework for deciphering spatially resolved transcriptomics data. Zhang L; Liang S; Wan L Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38801701 [TBL] [Abstract][Full Text] [Related]
13. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information. Li H; Li H; Zhou J; Gao X Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455 [TBL] [Abstract][Full Text] [Related]
14. SpaNCMG: improving spatial domains identification of spatial transcriptomics using neighborhood-complementary mixed-view graph convolutional network. Si Z; Li H; Shang W; Zhao Y; Kong L; Long C; Zuo Y; Feng Z Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38811360 [TBL] [Abstract][Full Text] [Related]
15. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network. Huo Y; Guo Y; Wang J; Xue H; Feng Y; Chen W; Li X J Genet Genomics; 2023 Sep; 50(9):720-733. PubMed ID: 37356752 [TBL] [Abstract][Full Text] [Related]
16. Latent feature extraction with a prior-based self-attention framework for spatial transcriptomics. Li Z; Chen X; Zhang X; Jiang R; Chen S Genome Res; 2023 Oct; 33(10):1757-1773. PubMed ID: 37903634 [TBL] [Abstract][Full Text] [Related]
17. Accurate Identification of Spatial Domain by Incorporating Global Spatial Proximity and Local Expression Proximity. Yu Y; He Y; Xie Z Biomolecules; 2024 Jun; 14(6):. PubMed ID: 38927077 [TBL] [Abstract][Full Text] [Related]
18. Accurately deciphering spatial domains for spatially resolved transcriptomics with stCluster. Wang T; Shu H; Hu J; Wang Y; Chen J; Peng J; Shang X Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38975895 [TBL] [Abstract][Full Text] [Related]
19. Unsupervised spatially embedded deep representation of spatial transcriptomics. Xu H; Fu H; Long Y; Ang KS; Sethi R; Chong K; Li M; Uddamvathanak R; Lee HK; Ling J; Chen A; Shao L; Liu L; Chen J Genome Med; 2024 Jan; 16(1):12. PubMed ID: 38217035 [TBL] [Abstract][Full Text] [Related]
20. Spatial-MGCN: a novel multi-view graph convolutional network for identifying spatial domains with attention mechanism. Wang B; Luo J; Liu Y; Shi W; Xiong Z; Shen C; Long Y Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37466210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]