These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38172277)

  • 41. Automatic speech recognition performance for digital scribes: a performance comparison between general-purpose and specialized models tuned for patient-clinician conversations.
    Tran BD; Mangu R; Tai-Seale M; Lafata JE; Zheng K
    AMIA Annu Symp Proc; 2022; 2022():1072-1080. PubMed ID: 37128439
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.
    Meyer BT; Brand T; Kollmeier B
    J Acoust Soc Am; 2011 Jan; 129(1):388-403. PubMed ID: 21303019
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phonological Development in a Bilingual Arabic-English-Speaking Child With Bilateral Cochlear Implants: A Longitudinal Case Study.
    Sabri M; Fabiano-Smith L
    Am J Speech Lang Pathol; 2018 Nov; 27(4):1506-1522. PubMed ID: 30326047
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detecting structured repetition in child-surrounding speech: Evidence from maximally diverse languages.
    Lester NA; Moran S; Küntay AC; Allen SEM; Pfeiler B; Stoll S
    Cognition; 2022 Apr; 221():104986. PubMed ID: 34953269
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interdependence of linguistic and indexical speech perception skills in school-age children with early cochlear implantation.
    Geers AE; Davidson LS; Uchanski RM; Nicholas JG
    Ear Hear; 2013 Sep; 34(5):562-74. PubMed ID: 23652814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of automatic speech recognition systems on speaking workload and task efficiency.
    Rieger JM
    Disabil Rehabil; 2003 Feb 18-Mar 4; 25(4-5):224-35. PubMed ID: 12623631
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The perception of Arabic and Japanese short and long vowels by native speakers of Arabic, Japanese, and Persian.
    Tsukada K
    J Acoust Soc Am; 2011 Feb; 129(2):989-98. PubMed ID: 21361455
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Linguistic Constraints on Statistical Word Segmentation: The Role of Consonants in Arabic and English.
    Kastner I; Adriaans F
    Cogn Sci; 2018 May; 42 Suppl 2():494-518. PubMed ID: 28744914
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Significance of speech production errors on cross-linguistic processing in Sepedi-English individuals with bilingual aphasia: a case series analysis.
    van Zyl M; Pillay B; Kritzinger A; Lekganyane M; Graham M
    Top Stroke Rehabil; 2019 May; 26(4):294-306. PubMed ID: 30913996
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Revisiting the target-masker linguistic similarity hypothesis.
    Brown VA; Dillman-Hasso NH; Li Z; Ray L; Mamantov E; Van Engen KJ; Strand JF
    Atten Percept Psychophys; 2022 Jul; 84(5):1772-1787. PubMed ID: 35474415
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Makkan Arabic does not have post-focus compression: a production and perception study.
    Alzaidi MS
    Phonetica; 2022 Jun; 79(3):247-308. PubMed ID: 35918784
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Does the degree of linguistic experience (native versus nonnative) modulate the degree to which listeners can benefit from a delay between the onset of the maskers and the onset of the target speech?
    Ben-David BM; Avivi-Reich M; Schneider BA
    Hear Res; 2016 Nov; 341():9-18. PubMed ID: 27496539
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low-frequency neural activity reflects rule-based chunking during speech listening.
    Jin P; Lu Y; Ding N
    Elife; 2020 Apr; 9():. PubMed ID: 32310082
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reduced speech: All is variability.
    Warner N
    Wiley Interdiscip Rev Cogn Sci; 2019 Jul; 10(4):e1496. PubMed ID: 30811095
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of an Automatic Speech Recognition Platform for Dysarthric Speech.
    Calvo I; Tropea P; Viganò M; Scialla M; Cavalcante AB; Grajzer M; Gilardone M; Corbo M
    Folia Phoniatr Logop; 2021; 73(5):432-441. PubMed ID: 33190131
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The impact of automatic speech recognition technology on second language pronunciation and speaking skills of EFL learners: a mixed methods investigation.
    Sun W
    Front Psychol; 2023; 14():1210187. PubMed ID: 37663357
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increase in speech recognition due to linguistic mismatch between target and masker speech: monolingual and simultaneous bilingual performance.
    Calandruccio L; Zhou H
    J Speech Lang Hear Res; 2014 Jun; 57(3):1089-97. PubMed ID: 24167230
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluating automatic speech recognition systems as quantitative models of cross-lingual phonetic category perception.
    Schatz T; Bach F; Dupoux E
    J Acoust Soc Am; 2018 May; 143(5):EL372. PubMed ID: 29857692
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison.
    Rader T; Adel Y; Fastl H; Baumann U
    Ear Hear; 2015; 36(6):e314-25. PubMed ID: 25989069
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phonological development in school-aged Kuwaiti Arabic children with Down syndrome: A pilot study.
    Ayyad H; AlBustan S; Ayyad F
    J Commun Disord; 2021; 93():106128. PubMed ID: 34139555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.