BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 38172352)

  • 1. Probing the interactions of the HIV-1 matrix protein-derived polybasic region with lipid bilayers: insights from AFM imaging and force spectroscopy.
    Aryal CM; Pan J
    Eur Biophys J; 2024 Feb; 53(1-2):57-67. PubMed ID: 38172352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane domain modulation of Aβ
    Azouz M; Cullin C; Lecomte S; Lafleur M
    Nanoscale; 2019 Nov; 11(43):20857-20867. PubMed ID: 31657431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supported Lipid Bilayers for Atomic Force Microscopy Studies.
    Lv Z; Banerjee S; Zagorski K; Lyubchenko YL
    Methods Mol Biol; 2018; 1814():129-143. PubMed ID: 29956230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol induced asymmetry in DOPC bilayers probed by AFM force spectroscopy.
    Adhyapak PR; Panchal SV; Murthy AVR
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):953-959. PubMed ID: 29408513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability.
    Andersson M; Jackman J; Wilson D; Jarvoll P; Alfredsson V; Okeyo G; Duran R
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):550-61. PubMed ID: 21071188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Supporting Polyelectrolyte Multilayers and Deposition Conditions on the Formation of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine Lipid Bilayers.
    Wlodek M; Szuwarzynski M; Kolasinska-Sojka M
    Langmuir; 2015 Sep; 31(38):10484-92. PubMed ID: 26334376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers.
    Unsay JD; Cosentino K; García-Sáez AJ
    J Vis Exp; 2015 Jul; (101):e52867. PubMed ID: 26273958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the Influence of Lipid Composition on Bilayer Perturbations Induced by the N-terminal Region of the Huntingtin Protein.
    Gamage YI; Pan J
    Biophysica; 2023 Dec; 3(4):582-597. PubMed ID: 38737720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile approach for assembling lipid bilayer membranes on template-stripped gold.
    Wang X; Shindel MM; Wang SW; Ragan R
    Langmuir; 2010 Dec; 26(23):18239-45. PubMed ID: 21050009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Penetratin translocation mechanism through asymmetric droplet interface bilayers.
    Gehan P; Kulifaj S; Soule P; Bodin JB; Amoura M; Walrant A; Sagan S; Thiam AR; Ngo K; Vivier V; Cribier S; Rodriguez N
    Biochim Biophys Acta Biomembr; 2020 Nov; 1862(11):183415. PubMed ID: 32710854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-mechanical characterization of asymmetric DLPC/DSPC supported lipid bilayers.
    Kamble S; Patil S; Appala VRM
    Chem Phys Lipids; 2021 Jan; 234():105007. PubMed ID: 33160952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards biomimics of cell membranes: Structural effect of phosphatidylinositol triphosphate (PIP
    Luchini A; Nzulumike ANO; Lind TK; Nylander T; Barker R; Arleth L; Mortensen K; Cárdenas M
    Colloids Surf B Biointerfaces; 2019 Jan; 173():202-209. PubMed ID: 30292933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy.
    Garcia-Manyes S; Oncins G; Sanz F
    Biophys J; 2005 Sep; 89(3):1812-26. PubMed ID: 15980180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-Dependent Membrane Interactions of the Histidine-Rich Cell-Penetrating Peptide LAH4-L1.
    Wolf J; Aisenbrey C; Harmouche N; Raya J; Bertani P; Voievoda N; Süss R; Bechinger B
    Biophys J; 2017 Sep; 113(6):1290-1300. PubMed ID: 28734478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol and phosphatidylethanolamine lipids exert opposite effects on membrane modulations caused by the M2 amphipathic helix.
    Pan J; Dalzini A; Song L
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):201-209. PubMed ID: 30071193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic Defects Induced by Melittin in Model Lipid Membranes: A Solution Atomic Force Microscopy Study.
    Pan J; Khadka NK
    J Phys Chem B; 2016 May; 120(20):4625-34. PubMed ID: 27167473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular interactions of Alzheimer amyloid-β oligomers with neutral and negatively charged lipid bilayers.
    Yu X; Wang Q; Pan Q; Zhou F; Zheng J
    Phys Chem Chem Phys; 2013 Jun; 15(23):8878-89. PubMed ID: 23493873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes.
    Abraham T; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2005 Feb; 44(6):2103-12. PubMed ID: 15697236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral organization of GM1 in phase-separated monolayers visualized by scanning force microscopy.
    Menke M; Künneke S; Janshoff A
    Eur Biophys J; 2002 Jul; 31(4):317-22. PubMed ID: 12122478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.