These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38172639)

  • 21. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility.
    Liu G; Zhang GJ; Jiang F; Ding XD; Sun YJ; Sun J; Ma E
    Nat Mater; 2013 Apr; 12(4):344-50. PubMed ID: 23353630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel nanostructure to achieve ultrahigh strength and good tensile ductility of a CoCrFeNiMn high entropy alloy.
    Xie Y; Xia T; Zhou D; Luo Y; Zeng W; Zhang Z; Wang J; Liang J; Zhang D
    Nanoscale; 2020 Mar; 12(9):5347-5352. PubMed ID: 32100778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength.
    Peng S; Wei Y; Gao H
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5204-5209. PubMed ID: 32094194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum-to-continuum prediction of ductility loss in aluminium-magnesium alloys due to dynamic strain aging.
    Keralavarma SM; Bower AF; Curtin WA
    Nat Commun; 2014 Aug; 5():4604. PubMed ID: 25087924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strengthening Effects of Zn Addition on an Ultrahigh Ductility Mg-Gd-Zr Magnesium Alloy.
    Hu Y; Zhang C; Zheng T; Pan F; Tang A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30314339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility.
    Wei S; Kim SJ; Kang J; Zhang Y; Zhang Y; Furuhara T; Park ES; Tasan CC
    Nat Mater; 2020 Nov; 19(11):1175-1181. PubMed ID: 32839590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations.
    Li T; Liu T; Zhao S; Chen Y; Luan J; Jiao Z; Ritchie RO; Dai L
    Nat Commun; 2023 May; 14(1):3006. PubMed ID: 37230991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy.
    Chung H; Choi WS; Jun H; Do HS; Lee BJ; Choi PP; Han HN; Ko WS; Sohn SS
    Nat Commun; 2023 Jan; 14(1):145. PubMed ID: 36627295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy.
    Edalati K; Horita Z; Valiev RZ
    Sci Rep; 2018 Apr; 8(1):6740. PubMed ID: 29712959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing strength and ductility via crystalline-amorphous nanoarchitectures in TiZr-based alloys.
    Ming K; Zhu Z; Zhu W; Fang B; Wei B; Liaw PK; Wei X; Wang J; Zheng S
    Sci Adv; 2022 Mar; 8(10):eabm2884. PubMed ID: 35263125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchical 3D Nanolayered Duplex-Phase Zr with High Strength, Strain Hardening, and Ductility.
    Zhang JW; Beyerlein IJ; Han WZ
    Phys Rev Lett; 2019 Jun; 122(25):255501. PubMed ID: 31347895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Remarkable Enhanced Mechanical Properties of TiAlCrNbV Medium-Entropy Alloy with Zr Additions.
    Chen PS; Shiu SJ; Tsai PH; Liao YC; Jang JS; Wu HJ; Chang SY; Chen CY; Tsao IY
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of tensile properties and porcelain bond strength in metal frameworks fabricated by selective laser melting using three different Co-Cr alloy powders.
    Yildiz MT; Babacan N
    J Prosthet Dent; 2024 May; 131(5):936-942. PubMed ID: 38042642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.
    Jiang S; Wang H; Wu Y; Liu X; Chen H; Yao M; Gault B; Ponge D; Raabe D; Hirata A; Chen M; Wang Y; Lu Z
    Nature; 2017 Apr; 544(7651):460-464. PubMed ID: 28397822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Additively manufactured hierarchical stainless steels with high strength and ductility.
    Wang YM; Voisin T; McKeown JT; Ye J; Calta NP; Li Z; Zeng Z; Zhang Y; Chen W; Roehling TT; Ott RT; Santala MK; Depond PJ; Matthews MJ; Hamza AV; Zhu T
    Nat Mater; 2018 Jan; 17(1):63-71. PubMed ID: 29115290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of Ti on the Tensile Properties of the High-Strength Powder Metallurgy High Entropy Alloys.
    Moravcik I; Gamanov S; Moravcikova-Gouvea L; Kovacova Z; Kitzmantel M; Neubauer E; Dlouhy I
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31991866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing.
    Ren J; Zhang Y; Zhao D; Chen Y; Guan S; Liu Y; Liu L; Peng S; Kong F; Poplawsky JD; Gao G; Voisin T; An K; Wang YM; Xie KY; Zhu T; Chen W
    Nature; 2022 Aug; 608(7921):62-68. PubMed ID: 35922499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gradient cell-structured high-entropy alloy with exceptional strength and ductility.
    Pan Q; Zhang L; Feng R; Lu Q; An K; Chuang AC; Poplawsky JD; Liaw PK; Lu L
    Science; 2021 Nov; 374(6570):984-989. PubMed ID: 34554824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced Mechanical Properties and Isotropy of Mg-2Al-0.8Sn Alloy through Ca Addition.
    Miao Y; Wang C; Wang M; Deng H; Ma P; Li Z
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion.
    Yilmazer H; Niinomi M; Nakai M; Cho K; Hieda J; Todaka Y; Miyazaki T
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2499-507. PubMed ID: 23623060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.