BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 38172830)

  • 1. Methanol bioconversion into C3, C4, and C5 platform chemicals by the yeast Ogataea polymorpha.
    Wefelmeier K; Schmitz S; Kösters BJ; Liebal UW; Blank LM
    Microb Cell Fact; 2024 Jan; 23(1):8. PubMed ID: 38172830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the methylotrophic yeast
    Wefelmeier K; Schmitz S; Haut AM; Otten J; Jülich T; Blank LM
    Front Bioeng Biotechnol; 2023; 11():1223726. PubMed ID: 37456718
    [No Abstract]   [Full Text] [Related]  

  • 3. Genome-scale model reconstruction of the methylotrophic yeast Ogataea polymorpha.
    Liebal UW; Fabry BA; Ravikrishnan A; Schedel CV; Schmitz S; Blank LM; Ebert BE
    BMC Biotechnol; 2021 Mar; 21(1):23. PubMed ID: 33722219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of free fatty acids from various carbon sources by Ogataea polymorpha.
    Li Y; Zhai X; Yu W; Feng D; Shah AA; Gao J; Zhou YJ
    Bioresour Bioprocess; 2022 Jul; 9(1):78. PubMed ID: 38647893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing methanol metabolism-related promoters for metabolic engineering of Ogataea polymorpha.
    Zhai X; Ji L; Gao J; Zhou YJ
    Appl Microbiol Biotechnol; 2021 Dec; 105(23):8761-8769. PubMed ID: 34748038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of the genes PDC1 and ADH1 activates glycerol conversion to ethanol in the thermotolerant yeast Ogataea (Hansenula) polymorpha.
    Kata I; Semkiv MV; Ruchala J; Dmytruk KV; Sibirny AA
    Yeast; 2016 Aug; 33(8):471-8. PubMed ID: 27256876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon source requirements for mating and mating-type switching in the methylotrophic yeasts Ogataea (Hansenula) polymorpha and Komagataella phaffii (Pichia pastoris).
    Feng D; Stoyanov A; Olliff JC; Wolfe KH; Lahtchev K; Hanson SJ
    Yeast; 2020 Feb; 37(2):237-245. PubMed ID: 31756769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potential and capability of the methylotrophic yeast Ogataea methanolica in a "methanol bioeconomy".
    Cai HL; Shimada M; Nakagawa T
    Yeast; 2022 Aug; 39(8):440-448. PubMed ID: 35811458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentation study for the production of hepatitis B virus pre-S2 antigen by the methylotrophic yeast Hansenula polymorpha.
    de Roubin MR; Bastien L; Shen SH; Groleau D
    J Ind Microbiol; 1991 Oct; 8(3):147-56. PubMed ID: 1367897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding the promoter toolbox for metabolic engineering of methylotrophic yeasts.
    Yan C; Yu W; Yao L; Guo X; Zhou YJ; Gao J
    Appl Microbiol Biotechnol; 2022 May; 106(9-10):3449-3464. PubMed ID: 35538374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional activator Cat8 is involved in regulation of xylose alcoholic fermentation in the thermotolerant yeast Ogataea (Hansenula) polymorpha.
    Ruchala J; Kurylenko OO; Soontorngun N; Dmytruk KV; Sibirny AA
    Microb Cell Fact; 2017 Feb; 16(1):36. PubMed ID: 28245828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1.
    Ubiyvovk VM; Ananin VM; Malyshev AY; Kang HA; Sibirny AA
    BMC Biotechnol; 2011 Jan; 11():8. PubMed ID: 21255454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioconversion of methanol to formaldehyde. II. By purified methanol oxidase from modified yeast, Hansenula polymorpha.
    Sagiroglu A; Altay V
    Prep Biochem Biotechnol; 2006; 36(4):321-32. PubMed ID: 16971303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward the construction of a technology platform for chemicals production from methanol: D-lactic acid production from methanol by an engineered yeast Pichia pastoris.
    Yamada R; Ogura K; Kimoto Y; Ogino H
    World J Microbiol Biotechnol; 2019 Feb; 35(2):37. PubMed ID: 30715602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene of the transcriptional activator MET4 is involved in regulation of glutathione biosynthesis in the methylotrophic yeast Ogataea (Hansenula) polymorpha.
    Yurkiv M; Kurylenko O; Vasylyshyn R; Dmytruk K; Fickers P; Sibirny A
    FEMS Yeast Res; 2018 Mar; 18(2):. PubMed ID: 29514209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the synthetic β-alanine pathway in Komagataella phaffii for conversion of methanol into 3-hydroxypropionic acid.
    Àvila-Cabré S; Pérez-Trujillo M; Albiol J; Ferrer P
    Microb Cell Fact; 2023 Nov; 22(1):237. PubMed ID: 37978380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioconversion of methanol to formaldehyde: 1 by free whole cell and immobilized whole cell of yeast Hansenula polymorpha.
    Sagiroglu A; Yavuz MO
    Artif Cells Blood Substit Immobil Biotechnol; 2005; 33(3):343-55. PubMed ID: 16152698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis.
    van Zutphen T; Baerends RJ; Susanna KA; de Jong A; Kuipers OP; Veenhuis M; van der Klei IJ
    BMC Genomics; 2010 Jan; 11():1. PubMed ID: 20044946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombination machinery engineering for precise genome editing in methylotrophic yeast
    Gao J; Gao N; Zhai X; Zhou YJ
    iScience; 2021 Mar; 24(3):102168. PubMed ID: 33665582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Protein Complexes in Non-methylotrophic and Methylotrophic Yeasts : Nonmethylotrophic and Methylotrophic Yeasts.
    Fernández FJ; López-Estepa M; Querol-García J; Vega MC
    Adv Exp Med Biol; 2016; 896():137-53. PubMed ID: 27165323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.