BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38172938)

  • 1. TET2-mediated ECM1 hypomethylation promotes the neovascularization in active proliferative diabetic retinopathy.
    Cai C; Gu C; He S; Meng C; Lai D; Zhang J; Qiu Q
    Clin Epigenetics; 2024 Jan; 16(1):6. PubMed ID: 38172938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of TET2-mediated ROBO4 hypomethylation in the development of diabetic retinopathy.
    Zhao L; Xu H; Liu X; Cheng Y; Xie J
    J Transl Med; 2023 Jul; 21(1):455. PubMed ID: 37430272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The palliative effects of folic acid on retinal microvessels in diabetic retinopathy via regulating the metabolism of DNA methylation and hydroxymethylation.
    Liu X; Cui H
    Bioengineered; 2021 Dec; 12(2):10766-10774. PubMed ID: 34874218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the aberrantly methylated differentially expressed genes in proliferative diabetic retinopathy.
    Miao A; Lu J; Wang Y; Mao S; Cui Y; Pan J; Li L; Luo Y
    Exp Eye Res; 2020 Oct; 199():108141. PubMed ID: 32721427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary research on LncRNA ATP2B2-IT2 in neovascularization of diabetic retinopathy.
    Yuan Y; Zhu A; Zeng L; Wang X; Zhang Y; Long X; Wu J; Ye M; He J; Tan W
    BMC Ophthalmol; 2024 Jun; 24(1):267. PubMed ID: 38907191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protective effect of pentraxin 3 on pathological retinal angiogenesis in an in vitro model of diabetic retinopathy.
    Jiang Y; Xing X; Niu T; Wang H; Wang C; Shi X; Liu K; Su L
    Arch Biochem Biophys; 2022 Aug; 725():109283. PubMed ID: 35577071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MiR-203a-3p inhibits retinal angiogenesis and alleviates proliferative diabetic retinopathy in oxygen-induced retinopathy (OIR) rat model via targeting VEGFA and HIF-1α.
    Han N; Xu H; Yu N; Wu Y; Yu L
    Clin Exp Pharmacol Physiol; 2020 Jan; 47(1):85-94. PubMed ID: 31408201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-139-5p promotes neovascularization in diabetic retinopathy by regulating the phosphatase and tensin homolog.
    Zhang Z; Song C; Wang T; Sun L; Qin L; Ju J
    Arch Pharm Res; 2021 Feb; 44(2):205-218. PubMed ID: 33609236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular RNA COL1A2 promotes angiogenesis via regulating miR-29b/VEGF axis in diabetic retinopathy.
    Zou J; Liu KC; Wang WP; Xu Y
    Life Sci; 2020 Sep; 256():117888. PubMed ID: 32497630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proprotein convertase furin is a driver and potential therapeutic target in proliferative diabetic retinopathy.
    Abu El-Asrar AM; Nawaz MI; Ahmad A; Siddiquei MM; Allegaert E; Gikandi PW; De Hertogh G; Opdenakker G
    Clin Exp Ophthalmol; 2022 Aug; 50(6):632-652. PubMed ID: 35322530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Wogonoside alleviates high glucose-induced dysfunction of retinal microvascular endothelial cells and diabetic retinopathy in rats by up-regulating SIRT1].
    Shao X; Yu J; Ni W
    Nan Fang Yi Ke Da Xue Xue Bao; 2022 Apr; 42(4):463-472. PubMed ID: 35527482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Vasohibin-2 expression correlated with autophagy in proliferative diabetic retinopathy.
    Ding Y; Su N; Luan J; Xu J; Qiu S; Sun Z
    Exp Eye Res; 2024 Mar; 240():109808. PubMed ID: 38278467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-409-5p promotes retinal neovascularization in diabetic retinopathy.
    Wang Y; Lin W; Ju J
    Cell Cycle; 2020 Jun; 19(11):1314-1325. PubMed ID: 32292119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic DNA methylation of matrix metalloproteinase-9 in the development of diabetic retinopathy.
    Kowluru RA; Shan Y; Mishra M
    Lab Invest; 2016 Oct; 96(10):1040-9. PubMed ID: 27454437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro protective effect of miR-181d-5p in high glucose‑induced human retinal microvascular endothelial cells by targeting the angiogenic factor VEGFA.
    Wang F; Yu C
    Eur Rev Med Pharmacol Sci; 2022 Sep; 26(17):6199-6207. PubMed ID: 36111920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective effect of miR-200b/c by inhibiting vasohibin-2 in human retinal microvascular endothelial cells.
    Ding Y; Hu Z; Luan J; Lv X; Yuan D; Xie P; Yuan S; Liu Q
    Life Sci; 2017 Dec; 191():245-252. PubMed ID: 28882646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of FAM18B in diabetic retinopathy.
    Wang AL; Rao VR; Chen JJ; Lussier YA; Rehman J; Huang Y; Jager RD; Grassi MA
    Mol Vis; 2014; 20():1146-59. PubMed ID: 25221423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TET2-BCLAF1 transcription repression complex epigenetically regulates the expression of colorectal cancer gene Ascl2 via methylation of its promoter.
    Shang Y; Jiang T; Ran L; Hu W; Wu Y; Ye J; Peng Z; Chen L; Wang R
    J Biol Chem; 2022 Jul; 298(7):102095. PubMed ID: 35660018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long noncoding RNA MALAT1 participates in the pathological angiogenesis of diabetic retinopathy in an oxygen-induced retinopathy mouse model by sponging miR-203a-3p.
    Yu L; Fu J; Yu N; Wu Y; Han N
    Can J Physiol Pharmacol; 2020 Apr; 98(4):219-227. PubMed ID: 31689123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LncRNA-MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR-125b/VE-cadherin axis.
    Liu P; Jia SB; Shi JM; Li WJ; Tang LS; Zhu XH; Tong P
    Biosci Rep; 2019 May; 39(5):. PubMed ID: 30988072
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.