BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38172938)

  • 21. Knockdown of Krüppel-Like Factor 9 Inhibits Aberrant Retinal Angiogenesis and Mitigates Proliferative Diabetic Retinopathy.
    Han N; Zhang L; Guo M; Yu L
    Mol Biotechnol; 2023 Apr; 65(4):612-623. PubMed ID: 36109428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel regulatory network of linc00174/miR-150-5p/VEGFA modulates pathological angiogenesis in diabetic retinopathy.
    Wang JJ; Wu KF; Wang DD
    Can J Physiol Pharmacol; 2021 Nov; 99(11):1175-1183. PubMed ID: 34081870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long non-coding ribonucleic acid urothelial carcinoma-associated 1 promotes high glucose-induced human retinal endothelial cells angiogenesis through regulating micro-ribonucleic acid-624-3p/vascular endothelial growth factor C.
    Yan H; Yao P; Hu K; Li X; Li H
    J Diabetes Investig; 2021 Nov; 12(11):1948-1957. PubMed ID: 34137197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The G-Protein-Coupled Formyl Peptide Receptor 2 Promotes Endothelial-Mesenchymal Transition in Diabetic Retinopathy.
    Lou X; Liu S; Shi J; Chen H; Wang Z; Le Y; Chen H; Zhu R; Yu Y
    Ophthalmic Res; 2023; 66(1):681-691. PubMed ID: 36805961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long non-coding RNA MEG3 inhibits neovascularization in diabetic retinopathy by regulating microRNA miR-6720-5p and cytochrome B5 reductase 2.
    Chen J; Liao L; Xu H; Zhang Z; Zhang J
    Bioengineered; 2021 Dec; 12(2):11872-11884. PubMed ID: 34978518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Matrix metalloproteinase-14 is a biomarker of angiogenic activity in proliferative diabetic retinopathy.
    Abu El-Asrar AM; Mohammad G; Allegaert E; Ahmad A; Siddiquei MM; Alam K; Gikandi PW; De Hertogh G; Opdenakker G
    Mol Vis; 2018; 24():394-406. PubMed ID: 29853773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NADH-Cytochrome B5 reductase 2 suppresses retinal vascular dysfunction through regulation of vascular endothelial growth factor A in diabetic retinopathy.
    Chen J; Sun Y; Chen L; Zhou Y
    Exp Eye Res; 2022 Sep; 222():109186. PubMed ID: 35820466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CD44 Drives M1 Macrophage Polarization in Diabetic Retinopathy.
    Pan Z; Zhao Y; Zhou S; Wang J; Fan F
    Curr Eye Res; 2023 Aug; 48(8):770-780. PubMed ID: 37191152
    [TBL] [Abstract][Full Text] [Related]  

  • 29. USP14 Regulates ATF2/PIK3CD Axis to Promote Microvascular Endothelial Cell Proliferation, Migration, and Angiogenesis in Diabetic Retinopathy.
    He FT; Fu XL; Li MH; Fu CY; Chen JZ
    Biochem Genet; 2023 Oct; 61(5):2076-2091. PubMed ID: 36939972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Knockdown of ChREBP ameliorates retinal microvascular endothelial cell injury and angiogenic responses in diabetic retinopathy.
    Sui Y; Du C; Wang M; Liu X; Chai Q; Liang S; Ma J; Duan J
    Biochem Biophys Res Commun; 2024 Jan; 694():149389. PubMed ID: 38128383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Therapeutic effect of ultra-long-lasting human C-peptide delivery against hyperglycemia-induced neovascularization in diabetic retinopathy.
    Moon CH; Lee AJ; Jeon HY; Kim EB; Ha KS
    Theranostics; 2023; 13(8):2424-2438. PubMed ID: 37215567
    [No Abstract]   [Full Text] [Related]  

  • 32. MicroRNA-199a-3p inhibits angiogenesis by targeting the VEGF/PI3K/AKT signalling pathway in an in vitro model of diabetic retinopathy.
    Wang L; Liu WX; Huang XG
    Exp Mol Pathol; 2020 Oct; 116():104488. PubMed ID: 32622012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recombinant human maspin inhibits high glucose-induced oxidative stress and angiogenesis of human retinal microvascular endothelial cells via PI3K/AKT pathway.
    Qiu F; Tong H; Wang Y; Tao J; Wang H; Chen L
    Mol Cell Biochem; 2018 Sep; 446(1-2):127-136. PubMed ID: 29363056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrative study of gene expression datasets in retinal samples of Diabetic Retinopathy.
    Rajendran S; Seetharaman S; Vetrivel U; Kuppan K
    Exp Eye Res; 2022 Oct; 223():109194. PubMed ID: 35868364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of pleiotrophin in proliferative diabetic retinopathy.
    Zhu X; Bai Y; Yu W; Pan C; Jin E; Song D; Xu Q; Yao Y; Huang L; Tao Y; Li X; Zhao M
    PLoS One; 2015; 10(1):e0115523. PubMed ID: 25617851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TET proteins and 5-methylcytosine oxidation in hematological cancers.
    Ko M; An J; Pastor WA; Koralov SB; Rajewsky K; Rao A
    Immunol Rev; 2015 Jan; 263(1):6-21. PubMed ID: 25510268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. tiRNA-Val promotes angiogenesis via Sirt1-Hif-1α axis in mice with diabetic retinopathy.
    Xu Y; Zou H; Ding Q; Zou Y; Tang C; Lu Y; Xu X
    Biol Res; 2022 Mar; 55(1):14. PubMed ID: 35346383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. S100A4 is upregulated in proliferative diabetic retinopathy and correlates with markers of angiogenesis and fibrogenesis.
    Abu El-Asrar AM; Nawaz MI; De Hertogh G; Alam K; Siddiquei MM; Van den Eynde K; Mousa A; Mohammad G; Geboes K; Opdenakker G
    Mol Vis; 2014; 20():1209-24. PubMed ID: 25253987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanism by which crocetin regulates the lncRNA NEAT1/miR-125b-5p/SOX7 molecular axis to inhibit high glucose-induced diabetic retinopathy.
    Chen Q; Xi X; Ma J; Wang X; Xia Y; Wang X; Deng Y; Li Y
    Exp Eye Res; 2022 Sep; 222():109157. PubMed ID: 35718188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Candidate genes for proliferative diabetic retinopathy.
    Petrovič D
    Biomed Res Int; 2013; 2013():540416. PubMed ID: 24066292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.