These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38173560)

  • 1. Towards the 4 V-class n-type organic lithium-ion positive electrode materials: the case of conjugated triflimides and cyanamides.
    Guo X; Apostol P; Zhou X; Wang J; Lin X; Rambabu D; Du M; Er S; Vlad A
    Energy Environ Sci; 2024 Jan; 17(1):173-182. PubMed ID: 38173560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conjugated sulfonamides as a class of organic lithium-ion positive electrodes.
    Wang J; Lakraychi AE; Liu X; Sieuw L; Morari C; Poizot P; Vlad A
    Nat Mater; 2021 May; 20(5):665-673. PubMed ID: 33318677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mellitic Triimides Showing Three One-Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li-Ion Batteries.
    Min DJ; Lee K; Park SY; Kwon JE
    ChemSusChem; 2020 May; 13(9):2303-2311. PubMed ID: 32109008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surpassing the Redox Potential Limit of Organic Cathode Materials via Extended p-π Conjugation of Dioxin.
    Zheng Y; Ji H; Liu J; Wang Z; Zhou J; Qian T; Yan C
    Nano Lett; 2022 Apr; 22(8):3473-3479. PubMed ID: 35426684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging Lithiated Organic Cathode Materials for Lithium-Ion Full Batteries.
    Lu Y; Zhang Q; Li F; Chen J
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202216047. PubMed ID: 36445787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Engineering of Quinone-Based Nickel Complexes and Polymers for All-Organic Li-Ion Batteries.
    Danchovski Y; Rasheev H; Stoyanova R; Tadjer A
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing the reversible solid-state electrochemistry of lithium-containing conjugated oximates for organic batteries.
    Wang J; Apostol P; Rambabu D; Guo X; Liu X; Robeyns K; Du M; Zhang Y; Pal S; Markowski R; Lucaccioni F; Lakraychi AE; Morari C; Gohy JF; Gupta D; Vlad A
    Sci Adv; 2023 Apr; 9(17):eadg6079. PubMed ID: 37115926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries.
    Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyridyl group design in viologens for anolyte materials in organic redox flow batteries.
    Chen C; Zhang S; Zhu Y; Qian Y; Niu Z; Ye J; Zhao Y; Zhang X
    RSC Adv; 2018 May; 8(34):18762-18770. PubMed ID: 35539647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards Reversible High-Voltage Multi-Electron Reactions in Alkali-Ion Batteries Using Vanadium Phosphate Positive Electrode Materials.
    Boivin E; Chotard JN; Masquelier C; Croguennec L
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33800777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dibenzo[a,e]Cyclooctatetraene-Functionalized Polymers as Potential Battery Electrode Materials.
    Desmaizieres G; Speer ME; Thiede I; Gaiser P; Perner V; Kolek M; Bieker P; Winter M; Esser B
    Macromol Rapid Commun; 2021 Sep; 42(18):e2000725. PubMed ID: 33660343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.
    Lee S; Kwon G; Ku K; Yoon K; Jung SK; Lim HD; Kang K
    Adv Mater; 2018 Oct; 30(42):e1704682. PubMed ID: 29582467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry.
    Lei Z; Yang Q; Xu Y; Guo S; Sun W; Liu H; Lv LP; Zhang Y; Wang Y
    Nat Commun; 2018 Feb; 9(1):576. PubMed ID: 29422540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic Li4C8H2O6 nanosheets for lithium-ion batteries.
    Wang S; Wang L; Zhang K; Zhu Z; Tao Z; Chen J
    Nano Lett; 2013 Sep; 13(9):4404-9. PubMed ID: 23978244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vanadium Ferrocyanides as a Highly Stable Cathode for Lithium-Ion Batteries.
    Nguyen TP; Kim IT
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-Active High-Performance Polyimides as Versatile Electrode Materials for Organic Lithium- and Sodium-Ion Batteries.
    Lubis AL; Baskoro F; Lin TH; Wong HQ; Liou GS; Yen HJ
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38148122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic Molecular Design of Ketone Derivatives of Aromatic Molecules for Lithium-Ion Batteries: First-Principles DFT Modeling.
    Park JH; Liu T; Kim KC; Lee SW; Jang SS
    ChemSusChem; 2017 Apr; 10(7):1584-1591. PubMed ID: 28199064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.