BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38173655)

  • 1. Rapid automated lumen segmentation of coronary optical coherence tomography images followed by 3D reconstruction of coronary arteries.
    Wu W; Roby M; Banga A; Oguz UM; Gadamidi VK; Hasini Vasa C; Zhao S; Dasari VS; Thota AK; Tanweer S; Lee C; Kassab GS; Chatzizisis YS
    J Med Imaging (Bellingham); 2024 Jan; 11(1):014004. PubMed ID: 38173655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully Automated Lumen Segmentation Method for Intracoronary Optical Coherence Tomography.
    Pociask E; Malinowski KP; Ślęzak M; Jaworek-Korjakowska J; Wojakowski W; Roleder T
    J Healthc Eng; 2018; 2018():1414076. PubMed ID: 30792831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ARCOCT: Automatic detection of lumen border in intravascular OCT images.
    Cheimariotis GA; Chatzizisis YS; Koutkias VG; Toutouzas K; Giannopoulos A; Riga M; Chouvarda I; Antoniadis AP; Doulaverakis C; Tsamboulatidis I; Kompatsiaris I; Giannoglou GD; Maglaveras N
    Comput Methods Programs Biomed; 2017 Nov; 151():21-32. PubMed ID: 28947003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading.
    Celi S; Berti S
    Med Image Anal; 2014 Oct; 18(7):1157-68. PubMed ID: 25077844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic segmentation of coronary morphology using transmittance-based lumen intensity-enhanced intravascular optical coherence tomography images and applying a localized level-set-based active contour method.
    Joseph S; Adnan A; Adlam D
    J Med Imaging (Bellingham); 2016 Oct; 3(4):044001. PubMed ID: 27981064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic segmentation of optical coherence tomography pullbacks of coronary arteries treated with bioresorbable vascular scaffolds: Application to hemodynamics modeling.
    Bologna M; Migliori S; Montin E; Rampat R; Dubini G; Migliavacca F; Mainardi L; Chiastra C
    PLoS One; 2019; 14(3):e0213603. PubMed ID: 30870477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images.
    Chatzizisis YS; Koutkias VG; Toutouzas K; Giannopoulos A; Chouvarda I; Riga M; Antoniadis AP; Cheimariotis G; Doulaverakis C; Tsampoulatidis I; Bouki K; Kompatsiaris I; Stefanadis C; Maglaveras N; Giannoglou GD
    Int J Cardiol; 2014 Apr; 172(3):568-80. PubMed ID: 24529948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of stented coronary arteries from optical coherence tomography images: Feasibility, validation, and repeatability of a segmentation method.
    Chiastra C; Montin E; Bologna M; Migliori S; Aurigemma C; Burzotta F; Celi S; Dubini G; Migliavacca F; Mainardi L
    PLoS One; 2017; 12(6):e0177495. PubMed ID: 28574987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images.
    Migliori S; Chiastra C; Bologna M; Montin E; Dubini G; Aurigemma C; Fedele R; Burzotta F; Mainardi L; Migliavacca F
    Med Eng Phys; 2017 Sep; 47():105-116. PubMed ID: 28711588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography.
    Tsantis S; Kagadis GC; Katsanos K; Karnabatidis D; Bourantas G; Nikiforidis GC
    Med Phys; 2012 Jan; 39(1):503-13. PubMed ID: 22225321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Lumen Segmentation in Intravascular Optical Coherence Tomography Images Using Level Set.
    Cao Y; Cheng K; Qin X; Yin Q; Li J; Zhu R; Zhao W
    Comput Math Methods Med; 2017; 2017():4710305. PubMed ID: 28270857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SU-E-I-90: Fast and Robust Algorithm Towards Vessel Lumen and Stent Strut Detection in Optical Coherence Tomography.
    Mandelias K; Tsantis S; Karnabatidis D; Katsakiori P; Mihailidis D; Nikiforidis G; Kagadis GC
    Med Phys; 2012 Jun; 39(6Part5):3645-3646. PubMed ID: 28517652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Automatic multi-region segmentation of intracoronary optical coherence tomography images based on neutrosophic theory].
    Wang G; Zhang X; Han Y; Wang H; Li Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Feb; 36(1):59-67. PubMed ID: 30887777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interstudy reproducibility of the second generation, Fourier domain optical coherence tomography in patients with coronary artery disease and comparison with intravascular ultrasound: a study applying automated contour detection.
    Jamil Z; Tearney G; Bruining N; Sihan K; van Soest G; Ligthart J; van Domburg R; Bouma B; Regar E
    Int J Cardiovasc Imaging; 2013 Jan; 29(1):39-51. PubMed ID: 22639296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape prior generation and geodesic active contour interactive iterating algorithm (SPACIAL): fully automatic segmentation for 3D lumen in intravascular optical coherence tomography images.
    Gui L; Ma J; Yang X
    Med Phys; 2021 Nov; 48(11):7099-7111. PubMed ID: 34469593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic quantitative analysis of in-stent restenosis using FD-OCT in vivo intra-arterial imaging.
    Mandelias K; Tsantis S; Spiliopoulos S; Katsakiori PF; Karnabatidis D; Nikiforidis GC; Kagadis GC
    Med Phys; 2013 Jun; 40(6):063101. PubMed ID: 23718609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Segmentation of Bioresorbable Vascular Scaffold Struts in Intracoronary Optical Coherence Tomography Images.
    Amrute JM; Athanasiou L; Rikhtegar F; de la Torre Hernández JM; Camarero TG; Edelman ER
    Int Conf Bioinform Biomed Eng; 2017 Oct; 2017():297-302. PubMed ID: 30147989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast segmentation of the femoral arteries from 3D MR images: A tool for rapid assessment of peripheral arterial disease.
    Chen W; Xu J; Chiu B
    Med Phys; 2015 May; 42(5):2431-48. PubMed ID: 25979037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Art care: A multi-modality coronary 3D reconstruction and hemodynamic status assessment software.
    Siogkas PK; Stefanou KA; Athanasiou LS; Papafaklis MI; Michalis LK; Fotiadis DI
    Technol Health Care; 2018; 26(1):187-193. PubMed ID: 29060945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast-marching segmentation of three-dimensional intravascular ultrasound images: a pre- and post-intervention study.
    Cardinal MH; Soulez G; Tardif JC; Meunier J; Cloutier G
    Med Phys; 2010 Jul; 37(7):3633-47. PubMed ID: 20831071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.