These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38173655)

  • 21. 3D reconstruction of coronary artery bifurcations from coronary angiography and optical coherence tomography: feasibility, validation, and reproducibility.
    Wu W; Samant S; de Zwart G; Zhao S; Khan B; Ahmad M; Bologna M; Watanabe Y; Murasato Y; Burzotta F; Brilakis ES; Dangas G; Louvard Y; Stankovic G; Kassab GS; Migliavacca F; Chiastra C; Chatzizisis YS
    Sci Rep; 2020 Oct; 10(1):18049. PubMed ID: 33093499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fully automatic three-dimensional quantitative analysis of intracoronary optical coherence tomography: method and Validation.
    Sihan K; Botha C; Post F; de Winter S; Gonzalo N; Regar E; Serruys PJ; Hamers R; Bruining N
    Catheter Cardiovasc Interv; 2009 Dec; 74(7):1058-65. PubMed ID: 19521990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semiautomatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images.
    Wang Z; Kyono H; Bezerra HG; Wang H; Gargesha M; Alraies C; Xu C; Schmitt JM; Wilson DL; Costa MA; Rollins AM
    J Biomed Opt; 2010; 15(6):061711. PubMed ID: 21198159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Plaque segmentation of intracoronary optical coherence tomography images based on
    Wang G; Wang P; Han Y; Liu X; Li Y; Lu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2017 Jun; 34(6):869-875. PubMed ID: 29761981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic segmentation of the lumen region in intravascular images of the coronary artery.
    Jodas DS; Pereira AS; Tavares JMRS
    Med Image Anal; 2017 Aug; 40():60-79. PubMed ID: 28624754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography.
    Yong YL; Tan LK; McLaughlin RA; Chee KH; Liew YM
    J Biomed Opt; 2017 Dec; 22(12):1-9. PubMed ID: 29274144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three dimensional reconstruction of coronary artery stents from optical coherence tomography: experimental validation and clinical feasibility.
    Wu W; Khan B; Sharzehee M; Zhao S; Samant S; Watanabe Y; Murasato Y; Mickley T; Bicek A; Bliss R; Valenzuela T; Iaizzo PA; Makadia J; Panagopoulos A; Burzotta F; Samady H; Brilakis ES; Dangas GD; Louvard Y; Stankovic G; Dubini G; Migliavacca F; Kassab GS; Edelman ER; Chiastra C; Chatzizisis YS
    Sci Rep; 2021 Jun; 11(1):12252. PubMed ID: 34112841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimized Computer-Aided Segmentation and Three-Dimensional Reconstruction Using Intracoronary Optical Coherence Tomography.
    Athanasiou L; Nezami FR; Galon MZ; Lopes AC; Lemos PA; de la Torre Hernandez JM; Ben-Assa E; Edelman ER
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):1168-1176. PubMed ID: 29969405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated 3D geometry segmentation of the healthy and diseased carotid artery in free-hand, probe tracked ultrasound images.
    de Ruijter J; van Sambeek M; van de Vosse F; Lopata R
    Med Phys; 2020 Mar; 47(3):1034-1047. PubMed ID: 31837022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supervised machine learning for coronary artery lumen segmentation in intravascular ultrasound images.
    Cui H; Xia Y; Zhang Y
    Int J Numer Method Biomed Eng; 2020 Jul; 36(7):e3348. PubMed ID: 32368868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methodology for fully automated segmentation and plaque characterization in intracoronary optical coherence tomography images.
    Athanasiou LS; Bourantas CV; Rigas G; Sakellarios AI; Exarchos TP; Siogkas PK; Ricciardi A; Naka KK; Papafaklis MI; Michalis LK; Prati F; Fotiadis DI
    J Biomed Opt; 2014 Feb; 19(2):026009. PubMed ID: 24525828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies.
    Sanz-Requena R; Moratal D; García-Sánchez DR; Bodí V; Rieta JJ; Sanchis JM
    Comput Med Imaging Graph; 2007 Mar; 31(2):71-80. PubMed ID: 17215103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D reconstruction of coronary arteries using frequency domain optical coherence tomography images and biplane angiography.
    Athanasiou LS; Bourantas CV; Siogkas PK; Sakellarios AI; Exarchos TP; Naka KK; Papafaklis MI; Michalis LK; Prati F; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2647-50. PubMed ID: 23366469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A deep learning-based model for characterization of atherosclerotic plaque in coronary arteries using optical coherence tomography  images.
    Abdolmanafi A; Duong L; Ibrahim R; Dahdah N
    Med Phys; 2021 Jul; 48(7):3511-3524. PubMed ID: 33914917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic lumen segmentation using uniqueness of vascular connected region for intravascular optical coherence tomography.
    Zhu F; Ding Z; Tao K; Li Q; Kuang H; Tian F; Zhou S; Hua P; Hu J; Shang M; Yu Y; Liu T
    J Biophotonics; 2021 Oct; 14(10):e202100124. PubMed ID: 34185435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated detection of vessel lumen and stent struts in intravascular optical coherence tomography to evaluate stent apposition and neointimal coverage.
    Nam HS; Kim CS; Lee JJ; Song JW; Kim JW; Yoo H
    Med Phys; 2016 Apr; 43(4):1662. PubMed ID: 27036565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated accurate lumen segmentation using L-mode interpolation for three-dimensional intravascular optical coherence tomography.
    Akbar A; Khwaja TS; Javaid A; Kim JS; Ha J
    Biomed Opt Express; 2019 Oct; 10(10):5325-5336. PubMed ID: 31646048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional spatial reconstruction of coronary arteries based on fusion of intravascular optical coherence tomography and coronary angiography.
    Zhu Y; Zhu F; Ding Z; Tao K; Lai T; Kuang H; Hua P; Shang M; Hu J; Yu Y; Liu T
    J Biophotonics; 2021 Mar; 14(3):e202000370. PubMed ID: 33247508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging.
    Ughi GJ; Verjans J; Fard AM; Wang H; Osborn E; Hara T; Mauskapf A; Jaffer FA; Tearney GJ
    Int J Cardiovasc Imaging; 2015 Feb; 31(2):259-68. PubMed ID: 25341407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks.
    Zhang T; Wei Q; Li Z; Meng W; Zhang M; Zhang Z
    Comput Methods Programs Biomed; 2023 Oct; 240():107632. PubMed ID: 37329802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.