These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38173732)
1. Determination of ketamine using melamine-modified gold nanoparticles. Güneş G; Can Z; Arda A; Apak MR Turk J Chem; 2023; 47(5):1053-1063. PubMed ID: 38173732 [TBL] [Abstract][Full Text] [Related]
2. Visual colorimetric sensor for nitroguanidine detection based on hydrogen bonding-induced aggregation of uric acid-functionalized gold nanoparticles. Can K; Can Z; Üzer A; Apak R Talanta; 2023 Aug; 260():124585. PubMed ID: 37119798 [TBL] [Abstract][Full Text] [Related]
3. Colorimetric determination of melamine by pyridine-3-boronic acid modified gold nanoparticles. Wu Z; Zhao H; Xue Y; He Y; Li X; Yuan Z J Nanosci Nanotechnol; 2012 Mar; 12(3):2412-6. PubMed ID: 22755067 [TBL] [Abstract][Full Text] [Related]
4. Sensitive colorimetric detection of melamine in processed raw milk using asymmetrically PEGylated gold nanoparticles. Chen XY; Ha W; Shi YP Talanta; 2019 Mar; 194():475-484. PubMed ID: 30609561 [TBL] [Abstract][Full Text] [Related]
5. Highly Sensitive Aptamer-Based Colorimetric Detection of Melamine in Raw Milk with Cysteamine-Stabilized Gold Nanoparticles. Zheng H; Li Y; Xu J; Bie J; Liu X; Guo J; Luo Y; Shen F; Sun C; Yu Y J Nanosci Nanotechnol; 2017 Feb; 17(2):853-61. PubMed ID: 29668219 [TBL] [Abstract][Full Text] [Related]
6. Picomolar melamine enhanced the fluorescence of gold nanoparticles: spectrofluorimetric determination of melamine in milk and infant formulas using functionalized triazole capped gold nanoparticles. Vasimalai N; Abraham John S Biosens Bioelectron; 2013 Apr; 42():267-72. PubMed ID: 23208097 [TBL] [Abstract][Full Text] [Related]
7. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Kumar N; Seth R; Kumar H Anal Biochem; 2014 Jul; 456():43-9. PubMed ID: 24727351 [TBL] [Abstract][Full Text] [Related]
8. 3-Aminophenylboronic Acid Conjugation on Responsive Polymer and Gold Nanoparticles for Qualitative Bacterial Detection. Wikantyasning ER; Da'i M; Cholisoh Z; Kalsum U J Pharm Bioallied Sci; 2023; 15(2):81-87. PubMed ID: 37469647 [TBL] [Abstract][Full Text] [Related]
9. Visual and Optical Absorbance Detection of Melamine in Milk by Melamine-Induced Aggregation of Gold Nanoparticles. Siddiquee S; Saallah S; Bohari NA; Ringgit G; Roslan J; Naher L; Hasan Nudin NF Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33924923 [TBL] [Abstract][Full Text] [Related]
10. Colorimetric detection of melamine in milk based on Triton X-100 modified gold nanoparticles and its paper-based application. Gao N; Huang P; Wu F Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():174-180. PubMed ID: 29136582 [TBL] [Abstract][Full Text] [Related]
11. Novel rapid detection of melamine based on the synergistic aggregation of gold nanoparticles. Cao W; Shan S; Xing K; Jing X; Peng J; Xiao X; Liu D; Xia J; Lai W Food Chem; 2023 Dec; 428():136789. PubMed ID: 37423110 [TBL] [Abstract][Full Text] [Related]
12. Visual and Colorimetric Sensing of Metsulfuron-Methyl by Exploiting Hydrogen Bond-Induced Anti-Aggregation of Gold Nanoparticles in the Presence of Melamine. Liu G; Zhang R; Huang X; Li L; Liu N; Wang J; Xu D Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29772778 [TBL] [Abstract][Full Text] [Related]
13. Detection of melamine in milk by surface-enhanced Raman spectroscopy coupled with magnetic and Raman-labeled nanoparticles. Yazgan NN; Boyacı IH; Topcu A; Tamer U Anal Bioanal Chem; 2012 Jun; 403(7):2009-17. PubMed ID: 22552785 [TBL] [Abstract][Full Text] [Related]
14. Visual and light scattering spectrometric method for the detection of melamine using uracil 5'-triphosphate sodium modified gold nanoparticles. Liang L; Zhen S; Huang C Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():99-104. PubMed ID: 27599194 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen-bonding-induced colorimetric detection of melamine by nonaggregation-based Au-NPs as a probe. Cao Q; Zhao H; He Y; Li X; Zeng L; Ding N; Wang J; Yang J; Wang G Biosens Bioelectron; 2010 Aug; 25(12):2680-5. PubMed ID: 20510598 [TBL] [Abstract][Full Text] [Related]
16. Aptamer-functionalized AuNPs for the high-sensitivity colorimetric detection of melamine in milk samples. Hu X; Chang K; Wang S; Sun X; Hu J; Jiang M PLoS One; 2018; 13(8):e0201626. PubMed ID: 30071096 [TBL] [Abstract][Full Text] [Related]
17. Colorimetric Sensor for Thiocyanate Based on Anti-aggregation of Gold Nanoparticles in the Presence of 2-Aminopyridine. Zhao Y; Liu R; Cui X; Fu Q; Yu M; Fei Q; Feng G; Shan H; Huan Y Anal Sci; 2020 Oct; 36(10):1165-1169. PubMed ID: 32336728 [TBL] [Abstract][Full Text] [Related]
18. A simple and sensitive AuNPs-based colorimetric aptasensor for specific detection of azlocillin. Xiao S; Lu J; Sun L; An S Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120924. PubMed ID: 35093821 [TBL] [Abstract][Full Text] [Related]
19. Ligand-free gold nanoparticles as colorimetric probes for the non-destructive determination of total dithiocarbamate pesticides after solid phase extraction. Giannoulis KM; Giokas DL; Tsogas GZ; Vlessidis AG Talanta; 2014 Feb; 119():276-83. PubMed ID: 24401415 [TBL] [Abstract][Full Text] [Related]
20. Development of extremely stable dual functionalized gold nanoparticles for effective colorimetric detection of clenbuterol and ractopamine in human urine samples. Simon T; Shellaiah M; Steffi P; Sun KW; Ko FH Anal Chim Acta; 2018 Sep; 1023():96-104. PubMed ID: 29754612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]