BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38173757)

  • 1. Reducible tungsten(VI) oxide-supported ruthenium(0) nanoparticles: highly active catalyst for hydrolytic dehydrogenation of ammonia borane.
    Akbayrak S; Tonbul Y; Özkar S
    Turk J Chem; 2023; 47(5):1224-1238. PubMed ID: 38173757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Palladium nanoparticles supported on cobalt(II,III) oxide nanocatalyst: High reusability and outstanding catalytic activity in hydrolytic dehydrogenation of ammonia borane.
    Akbayrak S; Özkar S
    J Colloid Interface Sci; 2022 Nov; 626():752-758. PubMed ID: 35820210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetically Isolable Pt
    Akbayrak S; Özkar S
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34341-34348. PubMed ID: 34255473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanozirconia supported ruthenium(0) nanoparticles: Highly active and reusable catalyst in hydrolytic dehydrogenation of ammonia borane.
    Tonbul Y; Akbayrak S; Özkar S
    J Colloid Interface Sci; 2018 Mar; 513():287-294. PubMed ID: 29156236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ prepared tungsten(VI) oxide supported Pd0 NPs, remarkable activity and reusability in H2 releasing from dimethylamine borane.
    Karaboğa S
    Turk J Chem; 2022; 46(2):394-403. PubMed ID: 38143470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane.
    Tonbul Y; Akbayrak S; Özkar S
    J Colloid Interface Sci; 2019 Oct; 553():581-587. PubMed ID: 31238228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium(0) nanoparticles supported on xonotlite nanowire: a long-lived catalyst for hydrolytic dehydrogenation of ammonia-borane.
    Akbayrak S; Ozkar S
    Dalton Trans; 2014 Jan; 43(4):1797-805. PubMed ID: 24247216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen liberation from the hydrolytic dehydrogenation of dimethylamine-borane at room temperature by using a novel ruthenium nanocatalyst.
    Caliskan S; Zahmakiran M; Durap F; Özkar S
    Dalton Trans; 2012 Apr; 41(16):4976-84. PubMed ID: 22410969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane.
    Akbayrak S; Tonbul Y; Özkar S
    Dalton Trans; 2016 Jul; 45(27):10969-78. PubMed ID: 27302302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-controllable APTS stabilized ruthenium(0) nanoparticles catalyst for the dehydrogenation of dimethylamine-borane at room temperature.
    Zahmakıran M; Philippot K; Özkar S; Chaudret B
    Dalton Trans; 2012 Jan; 41(2):590-8. PubMed ID: 22052298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane.
    Yao Q; Lu ZH; Yang K; Chen X; Zhu M
    Sci Rep; 2015 Oct; 5():15186. PubMed ID: 26471355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dihydrogen Phosphate Stabilized Ruthenium(0) Nanoparticles: Efficient Nanocatalyst for The Hydrolysis of Ammonia-Borane at Room Temperature.
    Durap F; Caliskan S; Özkar S; Karakas K; Zahmakiran M
    Materials (Basel); 2015 Jul; 8(7):4226-4238. PubMed ID: 28793435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic Layer Deposition of Ruthenium Nanoparticles on Electrospun Carbon Nanofibers: A Highly Efficient Nanocatalyst for the Hydrolytic Dehydrogenation of Methylamine Borane.
    Khalily MA; Yurderi M; Haider A; Bulut A; Patil B; Zahmakiran M; Uyar T
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26162-26169. PubMed ID: 29989394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H
    Al-Hameedawi D; Karaboğa S; Morkan İA
    Turk J Chem; 2023; 47(2):436-447. PubMed ID: 37528933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane.
    Manna J; Akbayrak S; Özkar S
    J Colloid Interface Sci; 2017 Dec; 508():359-368. PubMed ID: 28843925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amine-functionalized MIL-53(Al) with embedded ruthenium nanoparticles as a highly efficient catalyst for the hydrolytic dehydrogenation of ammonia borane.
    Zhang S; Zhou L; Chen M
    RSC Adv; 2018 Mar; 8(22):12282-12291. PubMed ID: 35539406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrotalcite framework stabilized ruthenium nanoparticles (Ru/HTaL): efficient heterogeneous catalyst for the methanolysis of ammonia-borane.
    BaĞuÇ İB; Yurderİ M; Saydan KanberoĞlu G; Bulut A
    Turk J Chem; 2020; 44(2):364-377. PubMed ID: 33488163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ formed catalytically active ruthenium nanocatalyst in room temperature dehydrogenation/dehydrocoupling of ammonia-borane from Ru(cod)(cot) precatalyst.
    Zahmakiran M; Ayvalı T; Philippot K
    Langmuir; 2012 Mar; 28(11):4908-14. PubMed ID: 22356554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane.
    Akbayrak S; Ozkar S
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6302-10. PubMed ID: 23113804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolytic dehydrogenation of NH
    Qiu X; Liu J; Huang P; Qiu S; Weng C; Chu H; Zou Y; Xiang C; Xu F; Sun L
    RSC Adv; 2020 Mar; 10(17):9996-10005. PubMed ID: 35498595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.