BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 38173874)

  • 1. Stripped: contribution of cyanobacterial extracellular polymeric substances to the adsorption of rare earth elements from aqueous solutions.
    Paper M; Jung P; Koch M; Lakatos M; Nilges T; Brück TB
    Front Bioeng Biotechnol; 2023; 11():1299349. PubMed ID: 38173874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rare earths stick to rare cyanobacteria: Future potential for bioremediation and recovery of rare earth elements.
    Paper M; Koch M; Jung P; Lakatos M; Nilges T; Brück TB
    Front Bioeng Biotechnol; 2023; 11():1130939. PubMed ID: 36926689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards rare earth element recovery from wastewaters: biosorption using phototrophic organisms.
    Heilmann M; Breiter R; Becker AM
    Appl Microbiol Biotechnol; 2021 Jun; 105(12):5229-5239. PubMed ID: 34143229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosorption of rare earth elements from luminophores by G. sulphuraria (Cyanidiophytina, Rhodophyta).
    Iovinella M; Palmieri M; Papa S; Auciello C; Ventura R; Lombardo F; Race M; Lubritto C; di Cicco MR; Davis SJ; Trifuoggi M; Marano A; Ciniglia C
    Environ Res; 2023 Dec; 239(Pt 1):117281. PubMed ID: 37827370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanobacterial promoted enrichment of rare earth elements europium, samarium and neodymium and intracellular europium particle formation.
    Fischer CB; Körsten S; Rösken LM; Cappel F; Beresko C; Ankerhold G; Schönleber A; Geimer S; Ecker D; Wehner S
    RSC Adv; 2019 Oct; 9(56):32581-32593. PubMed ID: 35529743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal biosorption by Extracellular Polymeric Substances (EPS) recovered from anammox granular sludge.
    Pagliaccia B; Carretti E; Severi M; Berti D; Lubello C; Lotti T
    J Hazard Mater; 2022 Feb; 424(Pt C):126661. PubMed ID: 34315635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study.
    Gupta VK; Rastogi A
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):170-8. PubMed ID: 18321684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectively auto-regulated adsorption and recovery of rare earth elements via an engineered E. coli.
    Xie X; Tan X; Yu Y; Li Y; Wang P; Liang Y; Yan Y
    J Hazard Mater; 2022 Feb; 424(Pt C):127642. PubMed ID: 34775317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of bionanomaterials using Bacillus cereus for the recovery of rare earth elements from mine wastewater.
    Yan Q; Lin X; Chen Z; Chen Z
    J Environ Manage; 2023 Mar; 329():117098. PubMed ID: 36563444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of Cr (VI) from aqueous solution by extracellular polymeric substances (EPS) produced by Parapedobacter sp. ISTM3 strain isolated from Mawsmai cave, Meghalaya, India.
    Tyagi B; Gupta B; Thakur IS
    Environ Res; 2020 Dec; 191():110064. PubMed ID: 32846180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorption of Cadmium and Lead by Dry Biomass of
    Kaleem M; Minhas LA; Hashmi MZ; Ali MA; Mahmoud RM; Saqib S; Nazish M; Zaman W; Samad Mumtaz A
    Molecules; 2023 Mar; 28(5):. PubMed ID: 36903536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery and separation of rare earth elements using columns loaded with DNA-filter hybrid.
    Takahashi Y; Kondo K; Miyaji A; Umeo M; Honma T; Asaoka S
    Anal Sci; 2012; 28(10):985-92. PubMed ID: 23059995
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Palmieri M; Iovinella M; Davis SJ; di Cicco MR; Lubritto C; Race M; Papa S; Fabbricino M; Ciniglia C
    Microorganisms; 2022 Oct; 10(11):. PubMed ID: 36363730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular polymeric substances of bacteria and their potential environmental applications.
    More TT; Yadav JS; Yan S; Tyagi RD; Surampalli RY
    J Environ Manage; 2014 Nov; 144():1-25. PubMed ID: 24907407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight the roles of loosely-bound and tightly-bound extracellular polymeric substances on Cu
    Lu S; Li X; Xi Y; Liu H; Zhang Z; Huang Y; Xie T; Liu Y; Quan B; Zhang C; Xu W
    J Colloid Interface Sci; 2021 Aug; 596():408-419. PubMed ID: 33852983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular polymeric substances facilitate the biosorption of phenanthrene on cyanobacteria Microcystis aeruginosa.
    Bai L; Xu H; Wang C; Deng J; Jiang H
    Chemosphere; 2016 Nov; 162():172-80. PubMed ID: 27497347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of dielectrophoresis towards characterization of rare earth elements biosorption by Cupriavidus necator.
    Adekanmbi EO; Giduthuri AT; Carv BAC; Counts J; Moberly JG; Srivastava SK
    Anal Chim Acta; 2020 Sep; 1129():150-157. PubMed ID: 32891385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosorption of Neodymium (Nd) from Aqueous Solutions Using
    Lima ÉC; Pinto D; Schadeck Netto M; Dos Reis GS; Silva LFO; Dotto GL
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal removal capability of two cyanobacterial species in autotrophic and mixotrophic mode of nutrition.
    Ghorbani E; Nowruzi B; Nezhadali M; Hekmat A
    BMC Microbiol; 2022 Feb; 22(1):58. PubMed ID: 35176992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broad-spectrum and effective rare earth enriching via Lanmodulin-displayed Yarrowia lipolytica.
    Xie X; Yang K; Lu Y; Li Y; Yan J; Huang J; Xu L; Yang M; Yan Y
    J Hazard Mater; 2022 Sep; 438():129561. PubMed ID: 35999730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.