These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38173980)

  • 21. Prompt gamma ray detection and imaging for boron neutron capture therapy using CdTe detector and novel detector shield - Monte Carlo study.
    Moktan H; Lee CL; Cho SH
    Med Phys; 2023 Mar; 50(3):1736-1745. PubMed ID: 36625477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of a gold-foil-based multisphere neutron spectrometer.
    Wang Z; Hutchinson JD; Hertel NE; Burgett E; Howell RM
    Radiat Prot Dosimetry; 2008; 128(3):289-93. PubMed ID: 17681965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical and biological doses produced from neutron capture in a 235U foil.
    Liu HB; Brugger RM; Laster BH; Greenberg DD; Gordon CR; Warkentien LS
    Med Phys; 1995 May; 22(5):591-5. PubMed ID: 7643798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of head phantom size on 10B and 1H[n,gamma]2H dose distributions for a broad field accelerator epithermal neutron source for BNCT.
    Gupta N; Niemkiewicz J; Blue TE; Gahbauer R; Qu TX
    Med Phys; 1993; 20(2 Pt 1):395-404. PubMed ID: 8497231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectrum average cross section measurement of
    Makwana R; Mukherjee S; Snoj L; S Barala S; Mehta M; Mishra P; Tiwari S; Abhangi M; Khirwadkar S; Naik H
    Appl Radiat Isot; 2017 Sep; 127():150-155. PubMed ID: 28618352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monte Carlo simulation of the response of ESR dosimeters added with gadolinium exposed to thermal, epithermal and fast neutrons.
    Marrale M; Basile S; Brai M; Longo A
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S186-9. PubMed ID: 19380235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gamma-ray and neutron shielding features for some fast neutron moderators of interest in
    Elsheikh NAA
    Appl Radiat Isot; 2020 Feb; 156():109012. PubMed ID: 32056691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compact shielding design of a portable
    Zhang F; Wu H; Wang X; Wu G; Jia W; Ti Y
    Appl Radiat Isot; 2017 Oct; 128():49-54. PubMed ID: 28688246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A method for measuring tissue-equivalent dose using a pin diode and activation foil in epithermal neutron beams with EN < 100 keV.
    Carolan MG; Rosenfeld AB
    Radiat Prot Dosimetry; 2006; 120(1-4):337-40. PubMed ID: 16644975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of neutron capture cross section of
    Ersöz OA; Spink R; Griswold JR; Yurt F; Mirzadeh S
    Appl Radiat Isot; 2019 Jun; 148():191-196. PubMed ID: 30978655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EXPERIMENTAL EVALUATION OF NEUTRON SHIELDING MATERIALS.
    Campo X; Méndez R; Lacerda MAS; Garrido D; Embid M; Sanz J
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):382-385. PubMed ID: 29036700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neutron and Photon Dose Rates in a D-T Neutron Generator Facility: MCNP Simulations and Experiments.
    Xu X; Yi C; Wanyue T; Yuanming S; Jingbin L; Yumin L; Long Z; Jiaxi L; Xiaoyi L
    Health Phys; 2020 Jun; 118(6):600-608. PubMed ID: 31972689
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of Pade approximation for calculation of epithermal neutron self-shielding factors of some materials dealing with Doppler broadening effects.
    Phuong HT; Nhon MV; Trang VT; Ishitsuka E
    Appl Radiat Isot; 2010 Jun; 68(6):1177-9. PubMed ID: 20083412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. WENDI: an improved neutron rem meter.
    Olsher RH; Hsu HH; Beverding A; Kleck JH; Casson WH; Vasilik DG; Devine RT
    Health Phys; 2000 Aug; 79(2):170-81. PubMed ID: 10910387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the effectiveness of steel for shielding photoneutrons produced in medical linear accelerators: A Monte Carlo particle transport study.
    Moghaddasi L; Colyer C
    Phys Med; 2022 Jun; 98():53-62. PubMed ID: 35490530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of the photoneutron target geometry for e-accelerator based BNCT.
    Chegeni N; Pur SB; Razmjoo S; Hoseini SK
    Electron Physician; 2017 Jun; 9(6):4590-4596. PubMed ID: 28848635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a dose distribution shifter to fit inside the collimator of a Boron Neutron Capture Therapy irradiation system to treat superficial tumours.
    Hu N; Tanaka H; Yoshikawa S; Miyao M; Akita K; Aihara T; Ono K
    Phys Med; 2021 Feb; 82():17-24. PubMed ID: 33548793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy.
    Enger SA; Rezaei A; Munck af Rosenschöld P; Lundqvist H
    Med Phys; 2006 Jan; 33(1):46-51. PubMed ID: 16485408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neutron flux self-shielding in activation analysis.
    Takeuchi T
    Radioisotopes; 1980 Mar; 29(3):119-23. PubMed ID: 7455174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monte Carlo simulation-based design of an electron-linear accelerator-based neutron source for boron neutron capture therapy.
    Hiraga F
    Appl Radiat Isot; 2020 Aug; 162():109203. PubMed ID: 32501225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.