These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38174134)
1. Designing an Egocentric Video-Based Dashboard to Report Hand Performance Measures for Outpatient Rehabilitation of Cervical Spinal Cord Injury. Kadambi A; Bandini A; Ramkalawan RD; Hitzig SL; Zariffa J Top Spinal Cord Inj Rehabil; 2023; 29(Suppl):75-87. PubMed ID: 38174134 [TBL] [Abstract][Full Text] [Related]
2. Views of individuals with spinal cord injury on the use of wearable cameras to monitor upper limb function in the home and community. Likitlersuang J; Sumitro ER; Theventhiran P; Kalsi-Ryan S; Zariffa J J Spinal Cord Med; 2017 Nov; 40(6):706-714. PubMed ID: 28738759 [TBL] [Abstract][Full Text] [Related]
3. Measuring Hand Use in the Home after Cervical Spinal Cord Injury Using Egocentric Video. Bandini A; Dousty M; Hitzig SL; Craven BC; Kalsi-Ryan S; Zariffa J J Neurotrauma; 2022 Dec; 39(23-24):1697-1707. PubMed ID: 35747948 [TBL] [Abstract][Full Text] [Related]
4. Perspectives and recommendations of individuals with tetraplegia regarding wearable cameras for monitoring hand function at home: Insights from a community-based study. Bandini A; Kalsi-Ryan S; Craven BC; Zariffa J; Hitzig SL J Spinal Cord Med; 2021; 44(sup1):S173-S184. PubMed ID: 33960874 [TBL] [Abstract][Full Text] [Related]
5. Egocentric video: a new tool for capturing hand use of individuals with spinal cord injury at home. Likitlersuang J; Sumitro ER; Cao T; Visée RJ; Kalsi-Ryan S; Zariffa J J Neuroeng Rehabil; 2019 Jul; 16(1):83. PubMed ID: 31277682 [TBL] [Abstract][Full Text] [Related]
6. A wearable vision-based system for detecting hand-object interactions in individuals with cervical spinal cord injury: First results in the home environment. Bandini A; Dousty M; Zariffa J Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2159-2162. PubMed ID: 33018434 [TBL] [Abstract][Full Text] [Related]
8. Grasp Analysis in the Home Environment as a Measure of Hand Function After Cervical Spinal Cord Injury. Dousty M; Bandini A; Eftekhar P; Fleet DJ; Zariffa J Neurorehabil Neural Repair; 2023 Jul; 37(7):466-474. PubMed ID: 37272451 [TBL] [Abstract][Full Text] [Related]
9. Interaction Detection in Egocentric Video: Toward a Novel Outcome Measure for Upper Extremity Function. Likitlersuang J; Zariffa J IEEE J Biomed Health Inform; 2018 Mar; 22(2):561-569. PubMed ID: 28114045 [TBL] [Abstract][Full Text] [Related]
10. The effects of unimanual and bimanual massed practice on upper limb function in adults with cervical spinal cord injury: a systematic review. Anderson A; Alexanders J; Addington C; Astill S Physiotherapy; 2019 Jun; 105(2):200-213. PubMed ID: 30717883 [TBL] [Abstract][Full Text] [Related]
11. An Effective and Efficient Method for Detecting Hands in Egocentric Videos for Rehabilitation Applications. Visee RJ; Likitlersuang J; Zariffa J IEEE Trans Neural Syst Rehabil Eng; 2020 Mar; 28(3):748-755. PubMed ID: 31985432 [TBL] [Abstract][Full Text] [Related]
12. Tenodesis Grasp Detection in Egocentric Video. Dousty M; Zariffa J IEEE J Biomed Health Inform; 2021 May; 25(5):1463-1470. PubMed ID: 32750944 [TBL] [Abstract][Full Text] [Related]
13. Noninvasive Electromagnetic Neuromodulation of the Central and Peripheral Nervous System for Upper-Limb Motor Strength and Functionality in Individuals with Cervical Spinal Cord Injury: A Systematic Review and Meta-Analysis. García-Alén L; Ros-Alsina A; Sistach-Bosch L; Wright M; Kumru H Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066092 [TBL] [Abstract][Full Text] [Related]
14. End-user and clinician perspectives on the viability of wearable functional electrical stimulation garments after stroke and spinal cord injury. Moineau B; Myers M; Ali SS; Popovic MR; Hitzig SL Disabil Rehabil Assist Technol; 2021 Apr; 16(3):241-250. PubMed ID: 31592679 [TBL] [Abstract][Full Text] [Related]
15. A suite of automated tools to quantify hand and wrist motor function after cervical spinal cord injury. Grasse KM; Hays SA; Rahebi KC; Warren VS; Garcia EA; Wigginton JG; Kilgard MP; Rennaker RL J Neuroeng Rehabil; 2019 Apr; 16(1):48. PubMed ID: 30975167 [TBL] [Abstract][Full Text] [Related]
16. Combining Spinal Cord Transcutaneous Stimulation with Activity-based Training to Improve Upper Extremity Function Following Cervical Spinal Cord Injury Zhang F; Carnahan J; Ravi M; Bheemreddy A; Kirshblum S; Forrest GF Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082735 [TBL] [Abstract][Full Text] [Related]
17. Functional passive range of motion of individuals with chronic cervical spinal cord injury. Frye SK; Geigle PR; York HS; Sweatman WM J Spinal Cord Med; 2020 Mar; 43(2):257-263. PubMed ID: 31192777 [TBL] [Abstract][Full Text] [Related]
18. Robot-assisted Therapy for the Upper Limb after Cervical Spinal Cord Injury. Yozbatiran N; Francisco GE Phys Med Rehabil Clin N Am; 2019 May; 30(2):367-384. PubMed ID: 30954153 [TBL] [Abstract][Full Text] [Related]
19. Validity of Novel Outcome Measures for Hand Function Performance After Stroke Using Egocentric Video. Tsai MF; Wang RH; Zariffa J Neurorehabil Neural Repair; 2023; 37(2-3):142-150. PubMed ID: 36912468 [TBL] [Abstract][Full Text] [Related]
20. A comparison of prefabricated and custom made resting hand splints for individuals with cervical spinal cord injury: A randomized controlled trial. Frye SK; Geigle PR Clin Rehabil; 2021 Jun; 35(6):861-869. PubMed ID: 33371741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]