These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38174596)

  • 1. Catalyst-On-Hotspot Nanoarchitecture: Plasmonic Focusing of Light onto Co-Photocatalyst for Efficient Light-To-Chemical Transformation.
    Chong C; Boong SK; Raja Mogan T; Lee JK; Ang ZZ; Li H; Lee HK
    Small; 2024 Jun; 20(24):e2309983. PubMed ID: 38174596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superlattice-based Plasmonic Catalysis: Concentrating Light at the Nanoscale to Drive Efficient Nitrogen-to-Ammonia Fixation at Ambient Conditions.
    Boong SK; Chong C; Lee JK; Ang ZZ; Li H; Lee HK
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202216562. PubMed ID: 36504182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible light-driven photocatalytic activity of Cu
    Fufa PA; Feysia GB; Gultom NS; Kuo DH; Chen X; Kabtamu DM; Zelekew OA
    Nanotechnology; 2022 May; 33(31):. PubMed ID: 35468594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harmonizing Plasmonic and Photonic Effects to Boost Photocatalytic H
    Raja Mogan T; Zhang J; Ng LS; Boong SK; Chong C; Lee JK; Li H; Lee HK
    Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202401277. PubMed ID: 38351496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Synthesis of Cu2O-Ag-AgBr/MA visible photocatalyst and its performance in degradation of 2-chlorophenol].
    Wang R; Zhou XF; Hu XX; Hu C
    Huan Jing Ke Xue; 2014 Sep; 35(9):3417-21. PubMed ID: 25518659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sandwiched ZnO@Au@Cu2O nanorod films as efficient visible-light-driven plasmonic photocatalysts.
    Ren S; Wang B; Zhang H; Ding P; Wang Q
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4066-74. PubMed ID: 25671518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerosol-Sprayed Gold/Ceria Photocatalyst with Superior Plasmonic Hot Electron-Enabled Visible-Light Activity.
    Jia H; Zhu XM; Jiang R; Wang J
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2560-2571. PubMed ID: 28054765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling Plasmonic and Cocatalyst Nanoparticles on N⁻TiO₂ for Visible-Light-Driven Catalytic Organic Synthesis.
    Wang Y; Chen Y; Hou Q; Ju M; Li W
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30866493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive study on the enhanced photocatlytic activity of a double-shell mesoporous plasmonic Cu
    Derikvandi H; Vosough M; Nezamzadeh-Ejhieh A
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):27582-27597. PubMed ID: 32394251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly stable Ag-doped Cu
    Wang Y; Yang J; Zhang Z; Zhao P; Chen Y; Guo Y; Luo X
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):131885. PubMed ID: 38688340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of Ag-AgVO
    Alorabi AQ; Hassan MS; Algethami JS; Baghdadi NE
    Sci Prog; 2021 Oct; 104(4):368504211050300. PubMed ID: 34637366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-Based Plasmonic Catalysis: Recent Advances and Future Perspectives.
    Xin Y; Yu K; Zhang L; Yang Y; Yuan H; Li H; Wang L; Zeng J
    Adv Mater; 2021 Aug; 33(32):e2008145. PubMed ID: 34050979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing an ohmic junction of copper@ cuprous oxide nanocomposite with plasmonic enhancement for photocatalysis.
    Dai B; Zhao W; Huang H; Li S; Yang G; Wu H; Sun C; Leung DYC
    J Colloid Interface Sci; 2022 Jun; 616():163-176. PubMed ID: 35203030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna-Reactor Plasmonic Photocatalysis.
    Li K; Hogan NJ; Kale MJ; Halas NJ; Nordlander P; Christopher P
    Nano Lett; 2017 Jun; 17(6):3710-3717. PubMed ID: 28481115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance.
    Rajender G; Choudhury B; Giri PK
    Nanotechnology; 2017 Sep; 28(39):395703. PubMed ID: 28726671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cu
    Li Z; Zhang X; Chen P; Shen Z; Wang R; He Q; Zhang S; Chang S; Tian J; Zhang H
    Langmuir; 2022 Nov; 38(45):13841-13848. PubMed ID: 36325981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of visible light photocatalytic NO(x) oxidation with plasmonic Bi cocatalyst-enhanced (BiO)2CO3 hierarchical microspheres.
    Sun Y; Zhao Z; Dong F; Zhang W
    Phys Chem Chem Phys; 2015 Apr; 17(16):10383-90. PubMed ID: 25765222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a Ag/Bi3TaO7 Plasmonic Photocatalyst with Enhanced Photocatalytic Activity for Degradation of Tetracycline.
    Luo B; Xu D; Li D; Wu G; Wu M; Shi W; Chen M
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17061-9. PubMed ID: 26167624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.