These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38174636)

  • 21. Adsorption behavior of O
    Zeng Y; Qin M; Zhou F; Xie C; Gong L; Ou S; Zhou Y
    J Mol Model; 2023 Aug; 29(9):275. PubMed ID: 37550471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A graphene-like BeS monolayer as a promising gas sensor material with strain and electric field induced tunable response: a first-principles study.
    Zaman A; Shahriar R; Hossain SMT; Akhond MR; Mumu HT; Sharif A
    RSC Adv; 2023 Aug; 13(34):23558-23569. PubMed ID: 37555094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Platinum Nanocrystals Embedded in Three-Dimensional Graphene for High-Performance Li-O
    Cao D; Hao Y; Wang Y; Bai Y; Li Y; Wang X; Chen J; Wu C
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40921-40929. PubMed ID: 36043892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymmetric 3D Elastic-Plastic Strain-Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking.
    Motlag M; Kumar P; Hu KY; Jin S; Li J; Shao J; Yi X; Lin YH; Walrath JC; Tong L; Huang X; Goldman RS; Ye L; Cheng GJ
    Adv Mater; 2019 May; 31(19):e1900597. PubMed ID: 30924972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures.
    Fan Q; Gottfried JM; Zhu J
    Acc Chem Res; 2015 Aug; 48(8):2484-94. PubMed ID: 26194462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A weakened Fermi level pinning induced adsorption energy non-charge-transfer mechanism during O
    Zhao X; Chen H; Wang J; Niu X
    Phys Chem Chem Phys; 2024 Jan; 26(4):3525-3530. PubMed ID: 38206617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Band-gap manipulations of monolayer graphene by phenyl radical adsorptions: a density functional theory study.
    Huang L; Sk MA; Chen P; Lim KH
    Chemphyschem; 2014 Aug; 15(12):2610-7. PubMed ID: 24925258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Band gap and magnetic engineering of penta-graphene
    Chen J; Cui H; Wang P; Zheng Y; Wang D; Chen H; Yuan H
    Phys Chem Chem Phys; 2020 Nov; 22(45):26155-26166. PubMed ID: 33185209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons.
    Shimizu T; Haruyama J; Marcano DC; Kosinkin DV; Tour JM; Hirose K; Suenaga K
    Nat Nanotechnol; 2011 Jan; 6(1):45-50. PubMed ID: 21170040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparative density functional theory study of oxygen doping versus adsorption on graphene to tune its band gap.
    Hussain A; Basit A
    J Mol Graph Model; 2021 Sep; 107():107982. PubMed ID: 34237664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures.
    Chen ZG; Shi Z; Yang W; Lu X; Lai Y; Yan H; Wang F; Zhang G; Li Z
    Nat Commun; 2014 Jul; 5():4461. PubMed ID: 25034319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Methane Storage in Graphene Oxide Induced by an External Electric Field: A Study by MD Simulations and DFT Calculation.
    Han Y; Zhao J; Guo X; Jiao T
    Langmuir; 2023 Jun; 39(22):7648-7659. PubMed ID: 37222045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First-principles investigation of the microscopic mechanism of the physical and chemical mixed adsorption of graphene on metal surfaces.
    Zhang X; Wang S
    RSC Adv; 2019 Oct; 9(56):32712-32720. PubMed ID: 35529730
    [TBL] [Abstract][Full Text] [Related]  

  • 35. First-principles studies of HF and HCl adsorption over graphene.
    Ran J; Hao X; Li K; Wang C; Song X; Sun X; Ning P
    J Mol Model; 2020 Sep; 26(10):262. PubMed ID: 32909165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of gas adsorption on transition metal ion-modified graphene using DFT calculations.
    Li J; Fan X; Chen J; Shi G; Liu X
    J Mol Model; 2024 Feb; 30(3):72. PubMed ID: 38366130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical study of NH
    Liu N; Gao D; Wang D
    Chemphyschem; 2024 Mar; 25(6):e202300861. PubMed ID: 38288557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical insights into the oxidation of elemental mercury by O
    Ji W; Meng Y; Fan X; Xiao X; Li F
    Chemosphere; 2022 Jun; 297():134178. PubMed ID: 35240146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple and low-cost production of magnetite/graphene nanocomposites for heavy metal ions adsorption.
    Yan J; Li R
    Sci Total Environ; 2022 Mar; 813():152604. PubMed ID: 34953843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New insights into NO adsorption on alkali metal and transition metal doped graphene nanoribbon surface: A DFT approach.
    R D; Verma A; Choudhary BC; Sharma RK
    J Mol Graph Model; 2022 Mar; 111():108109. PubMed ID: 34952481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.