These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38174796)

  • 1. Probing the thermal resistance of solid-liquid interfaces in nanofluids with molecular dynamics.
    Carrillo-Berdugo I; Navas J; Grau-Crespo R
    J Chem Phys; 2024 Jan; 160(1):. PubMed ID: 38174796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of interface layer on the enhancement of thermal conductivity of SiC-Water nanofluids: Molecular dynamics simulation.
    Zhu Y; Chen H; Zhang J; Xiao G; Yi M; Chen Z; Xu C
    J Mol Graph Model; 2024 Mar; 127():108696. PubMed ID: 38147710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal Conductivity Enhancement of Metal Oxide Nanofluids: A Critical Review.
    Yasmin H; Giwa SO; Noor S; Sharifpur M
    Nanomaterials (Basel); 2023 Feb; 13(3):. PubMed ID: 36770558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conductivity of interfacial layers in nanofluids.
    Liang Z; Tsai HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041602. PubMed ID: 21599170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel WS
    Martínez-Merino P; Midgley SD; Martín EI; Estellé P; Alcántara R; Sánchez-Coronilla A; Grau-Crespo R; Navas J
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5793-5804. PubMed ID: 31942792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Method to Determine the Thermal Conductivity of Interfacial Layers Surrounding the Nanoparticles of a Nanofluid.
    Pal R
    Nanomaterials (Basel); 2014 Oct; 4(4):844-855. PubMed ID: 28344252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical review on thermal conductivity enhancement of graphene-based nanofluids.
    Pavía M; Alajami K; Estellé P; Desforges A; Vigolo B
    Adv Colloid Interface Sci; 2021 Aug; 294():102452. PubMed ID: 34139659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of the Interactions at the Tungsten Disulphide Surface in the Stability and Enhanced Thermal Properties of Nanofluids with Application in Solar Thermal Energy.
    Martínez-Merino P; Sánchez-Coronilla A; Alcántara R; Martín EI; Carrillo-Berdugo I; Gómez-Villarejo R; Navas J
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32443607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward nanofluids of ultra-high thermal conductivity.
    Wang L; Fan J
    Nanoscale Res Lett; 2011 Feb; 6(1):153. PubMed ID: 21711677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Nanofluid Thermal Conductivity and Optimization: Original Approach and Background.
    Wohld J; Beck J; Inman K; Palmer M; Cummings M; Fulmer R; Vafaei S
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermophysical properties of nanofluids.
    Rudyak VY; Minakov AV
    Eur Phys J E Soft Matter; 2018 Jan; 41(1):15. PubMed ID: 29380078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review on thermal properties of nanofluids: Recent developments.
    Angayarkanni SA; Philip J
    Adv Colloid Interface Sci; 2015 Nov; 225():146-76. PubMed ID: 26391519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced thermal conductivity of nanofluids by introducing Janus particles.
    Cui X; Wang J; Xia G
    Nanoscale; 2021 Dec; 14(1):99-107. PubMed ID: 34897350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Solvothermal Synthesis of TiO₂ Nanoparticles in a Non-Polar Medium to Prepare Highly Stable Nanofluids with Improved Thermal Properties.
    Aguilar T; Carrillo-Berdugo I; Gómez-Villarejo R; Gallardo JJ; Martínez-Merino P; Piñero JC; Alcántara R; Fernández-Lorenzo C; Navas J
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30309047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, thermophysical characterization and thermal performance analysis of novel Cu-MXene hybrid nanofluids for efficient coolant applications.
    Kumar KR; Shaik AH
    RSC Adv; 2023 Oct; 13(42):29536-29560. PubMed ID: 37818262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids.
    Timofeeva EV; Smith DS; Yu W; France DM; Singh D; Routbort JL
    Nanotechnology; 2010 May; 21(21):215703. PubMed ID: 20431197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets.
    Mehrali M; Sadeghinezhad E; Latibari ST; Kazi SN; Mehrali M; Zubir MN; Metselaar HS
    Nanoscale Res Lett; 2014 Jan; 9(1):15. PubMed ID: 24410867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Molecular Dynamics Analysis on Interfacial Thermal Resistance between Particle and Medium in Light-Induced Heat Transfer of Plasmonic Nanofluid.
    Zhao C; An W; Zhang Y; Dong Q; Gao N
    Langmuir; 2022 Feb; 38(7):2327-2334. PubMed ID: 35134292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discussion on the thermal conductivity enhancement of nanofluids.
    Xie H; Yu W; Li Y; Chen L
    Nanoscale Res Lett; 2011 Feb; 6(1):124. PubMed ID: 21711638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial interaction-driven rheological properties of quartz nanofluids from molecular dynamics simulations and density functional theory calculations.
    Lou Z; Cheng C; Cui Y; Tian H
    J Mol Model; 2022 Jun; 28(7):189. PubMed ID: 35708874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.