These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38174921)

  • 1. Fluorophosphoniums as Lewis acids in organometallic catalysis: application to the carbonylation of β-lactones.
    Pietraru MH; Ponsard L; Lentz N; Thuéry P; Nicolas E; Cantat T
    Chem Commun (Camb); 2024 Jan; 60(8):1043-1046. PubMed ID: 38174921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous-Flow Production of Succinic Anhydrides via Catalytic β-Lactone Carbonylation by Co(CO)
    Park HD; Dincă M; Román-Leshkov Y
    J Am Chem Soc; 2018 Aug; 140(34):10669-10672. PubMed ID: 30096234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic carbonylation of beta-lactones to succinic anhydrides.
    Getzler YD; Kundnani V; Lobkovsky EB; Coates GW
    J Am Chem Soc; 2004 Jun; 126(22):6842-3. PubMed ID: 15174834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palladium-Catalyzed Low Pressure Carbonylation of Allylic Alcohols by Catalytic Anhydride Activation.
    Schelwies M; Paciello R; Pelzer R; Siegel W; Breuer M
    Chemistry; 2021 Jun; 27(36):9263-9266. PubMed ID: 33783901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of beta-lactones by the regioselective, cobalt and Lewis acid catalyzed carbonylation of simple and functionalized epoxides.
    Lee JT; Thomas PJ; Alper H
    J Org Chem; 2001 Aug; 66(16):5424-6. PubMed ID: 11485465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Cyclic Anhydrides via Ligand-Enabled C-H Carbonylation of Simple Aliphatic Acids.
    Zhuang Z; Herron AN; Yu JQ
    Angew Chem Int Ed Engl; 2021 Jul; 60(30):16382-16387. PubMed ID: 33977635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic double carbonylation of epoxides to succinic anhydrides: catalyst discovery, reaction scope, and mechanism.
    Rowley JM; Lobkovsky EB; Coates GW
    J Am Chem Soc; 2007 Apr; 129(16):4948-60. PubMed ID: 17397149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic studies of the copolymerization reaction of aziridines and carbon monoxide to produce poly-beta-peptoids.
    Darensbourg DJ; Phelps AL; Gall NL; Jia L
    J Am Chem Soc; 2004 Oct; 126(42):13808-15. PubMed ID: 15493940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of beta-lactones: a highly active and selective catalyst for epoxide carbonylation.
    Getzler YD; Mahadevan V; Lobkovsky EB; Coates GW
    J Am Chem Soc; 2002 Feb; 124(7):1174-5. PubMed ID: 11841278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synthesis, characterisation and reactivity of 2-phosphanylethylcyclopentadienyl complexes of cobalt, rhodium and iridium.
    McConnell AC; Pogorzelec PJ; Slawin AM; Williams GL; Elliott PI; Haynes A; Marr AC; Cole-Hamilton DJ
    Dalton Trans; 2006 Jan; (1):91-107. PubMed ID: 16357965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Investigation of the Organoborane/Lewis Base Pairs on the Copolymerization of Propylene Oxide with Succinic Anhydride.
    Hu LF; Chen DJ; Yang JL; Zhang XH
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31936276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A readily synthesized and highly active epoxide carbonylation catalyst based on a chromium porphyrin framework: expanding the range of available beta-lactones.
    Schmidt JA; Mahadevan V; Getzler YD; Coates GW
    Org Lett; 2004 Feb; 6(3):373-6. PubMed ID: 14748596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of epoxide carbonylation by [Lewis Acid]+[Co(CO)4]- catalysts.
    Church TL; Getzler YD; Coates GW
    J Am Chem Soc; 2006 Aug; 128(31):10125-33. PubMed ID: 16881642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multisite catalysis: a mechanistic study of beta-lactone synthesis from epoxides and CO--insights into a difficult case of homogeneous catalysis.
    Molnar F; Luinstra GA; Allmendinger M; Rieger B
    Chemistry; 2003 Mar; 9(6):1273-80. PubMed ID: 12645016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous Epoxide Carbonylation by Cooperative Ion-Pair Catalysis in Co(CO)
    Park HD; Dincă M; Román-Leshkov Y
    ACS Cent Sci; 2017 May; 3(5):444-448. PubMed ID: 28573206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dehydrogenation of saturated CC and BN bonds at cationic N-heterocyclic carbene stabilized M(III) centers (M = Rh, Ir).
    Tang CY; Thompson AL; Aldridge S
    J Am Chem Soc; 2010 Aug; 132(30):10578-91. PubMed ID: 20662531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipase-Catalyzed Ring-Opening Polymerization of Benzyl Malolactonate: An Unusual Mechanism?
    Casajus H; Dubreucq E; Tranchimand S; Perrier V; Nugier-Chauvin C; Cammas-Marion S
    Biomacromolecules; 2020 Jul; 21(7):2874-2883. PubMed ID: 32551525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical beta-lactone synthesis: epoxide carbonylation at 1 atm.
    Kramer JW; Lobkovsky EB; Coates GW
    Org Lett; 2006 Aug; 8(17):3709-12. PubMed ID: 16898798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-Controlled Palladium-Catalyzed Carbonylation of Alkynols: Highly Selective Synthesis of α-Methylene-β-Lactones.
    Ge Y; Ye F; Liu J; Yang J; Spannenberg A; Jiao H; Jackstell R; Beller M
    Angew Chem Int Ed Engl; 2020 Nov; 59(48):21585-21590. PubMed ID: 32573055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonylation of C-N Bonds in Tertiary Amines Catalyzed by Low-Valent Iron Catalysts.
    Nasr Allah T; Savourey S; Berthet JC; Nicolas E; Cantat T
    Angew Chem Int Ed Engl; 2019 Aug; 58(32):10884-10887. PubMed ID: 31150564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.