These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38175010)

  • 1. Deep learning approach to predict optical attenuation in additively manufactured planar waveguides.
    Pflieger K; Evertz A; Overmeyer L
    Appl Opt; 2024 Jan; 63(1):66-76. PubMed ID: 38175010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing modal power in multi-mode waveguide via machine learning.
    Liu A; Lin T; Han H; Zhang X; Chen Z; Gan F; Lv H; Liu X
    Opt Express; 2018 Aug; 26(17):22100-22109. PubMed ID: 30130908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nondestructive method for attenuation measurements in optical hollow waveguides.
    Dahan R; Dror J; Inberg A; Croitoru N
    Opt Lett; 1995 Jul; 20(14):1536-8. PubMed ID: 19862074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized ARROW-Based MMI Waveguides for High Fidelity Excitation Patterns for Optofluidic Multiplexing.
    Stott MA; Ganjalizadeh V; Olsen M; Orfila M; McMurray J; Schmidt H; Hawkins AR
    IEEE J Quantum Electron; 2018 Jun; 54(3):. PubMed ID: 29657333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network.
    Wu C; Yu H; Lee S; Peng R; Takeuchi I; Li M
    Nat Commun; 2021 Jan; 12(1):96. PubMed ID: 33398011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using a deep convolutional network to predict the longitudinal dispersion coefficient.
    Ghiasi B; Jodeiri A; Andik B
    J Contam Hydrol; 2021 Jun; 240():103798. PubMed ID: 33770526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical printed circuit boards with multimode polymer waveguides and pluggable connectors for high-speed optical interconnects.
    Shi Y; Liu X; Ma L; Immonen M; Zhu L; He Z
    Opt Express; 2023 Aug; 31(17):27776-27786. PubMed ID: 37710845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the pedestal process for reducing sidewall scattering in photonic waveguides.
    Melo EG; Alayo MI; Carvalho DO
    Opt Express; 2017 May; 25(9):9755-9760. PubMed ID: 28468355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of Silicon Nitride Waveguide Platform for On-Chip Virus Detection.
    El Shamy RS; Swillam MA; Li X
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of backscattering effects in waveguides.
    Kapron FP; Maurer RD; Teter MP
    Appl Opt; 1972 Jun; 11(6):1352-6. PubMed ID: 20119145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Inscription of on-surface waveguides in polymers using a mid-ir fiber laser.
    Bérubé JP; Frayssinous C; Lapointe J; Duval S; Fortin V; Vallée R
    Opt Express; 2019 Oct; 27(21):31013-31022. PubMed ID: 31684342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultracompact photonic-waveguide circuits in Si-pillar photonic-crystal structures for integrated nanophotonic switches.
    Tokushima M; Olmos JJ; Kitayama K
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1626-34. PubMed ID: 20355549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficiency vertical fibre-to-polymer waveguide coupling scheme for scalable polymer photonic circuits.
    Kumar A; Nambiar S; Kallega R; Ranganath P; Ea P; Selvaraja SK
    Opt Express; 2021 Mar; 29(7):9699-9710. PubMed ID: 33820124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic waveguide bundles using 3D laser writing and deep neural network image reconstruction.
    Panusa G; Dinc NU; Psaltis D
    Opt Express; 2022 Jan; 30(2):2564-2577. PubMed ID: 35209393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband couplers for hybrid silicon-chalcogenide glass photonic integrated circuits.
    Shen B; Lin H; Merget F; Azadeh SS; Li C; Lo GQ; Richardson KA; Hu J; Witzens J
    Opt Express; 2019 May; 27(10):13781-13792. PubMed ID: 31163837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstrating low Raman background in UV-written SiO
    Jensen MN; Gates JC; Flint AI; Hellesø OG
    Opt Express; 2023 Sep; 31(19):31092-31107. PubMed ID: 37710637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optofluidic waveguides for reconfigurable photonic systems.
    Chung AJ; Erickson D
    Opt Express; 2011 Apr; 19(9):8602-9. PubMed ID: 21643111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rb/Ba side-diffused ridge waveguides in KTP.
    Volk MF; Rüter CE; Kip D
    Opt Express; 2017 Aug; 25(17):19872-19877. PubMed ID: 29041674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tapered waveguides for guided wave optics.
    Campbell JC
    Appl Opt; 1979 Mar; 18(6):900-2. PubMed ID: 20208841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.