These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 38175067)
1. Flexible p-i-n perovskite solar cell with optimized performance by KBF Li F; Liu K; Dai J Opt Express; 2024 Jan; 32(1):366-378. PubMed ID: 38175067 [TBL] [Abstract][Full Text] [Related]
2. Record Efficiency Stable Flexible Perovskite Solar Cell Using Effective Additive Assistant Strategy. Feng J; Zhu X; Yang Z; Zhang X; Niu J; Wang Z; Zuo S; Priya S; Liu SF; Yang D Adv Mater; 2018 Aug; 30(35):e1801418. PubMed ID: 29995330 [TBL] [Abstract][Full Text] [Related]
3. Potassium tetrafluoroborate-induced defect tolerance enables efficient wide-bandgap perovskite solar cells. Yu Y; Liu R; Zhang F; Liu C; Wu Q; Zhang M; Yu H J Colloid Interface Sci; 2022 Jan; 605():710-717. PubMed ID: 34365307 [TBL] [Abstract][Full Text] [Related]
4. Exfoliated Fluorographene Quantum Dots as Outstanding Passivants for Improved Flexible Perovskite Solar Cells. Yang L; Li Y; Wang L; Pei Y; Wang Z; Zhang Y; Lin H; Li X ACS Appl Mater Interfaces; 2020 May; 12(20):22992-23001. PubMed ID: 32343556 [TBL] [Abstract][Full Text] [Related]
5. Dual Functions of Crystallization Control and Defect Passivation Enabled by an Ionic Compensation Strategy for Stable and High-Efficient Perovskite Solar Cells. Gao Y; Wu Y; Liu Y; Chen C; Bai X; Yang L; Shi Z; Yu WW; Dai Q; Zhang Y ACS Appl Mater Interfaces; 2020 Jan; 12(3):3631-3641. PubMed ID: 31880905 [TBL] [Abstract][Full Text] [Related]
6. Dual Effect of Superhalogen Ionic Liquids Ensures Efficient Carrier Transport for Highly Efficient and Stable Perovskite Solar Cells. Zhang H; Xu S; Guo T; Du D; Tao Y; Zhang L; Liu G; Chen X; Ye J; Guo Z; Zheng H ACS Appl Mater Interfaces; 2022 Jun; 14(25):28826-28833. PubMed ID: 35713617 [TBL] [Abstract][Full Text] [Related]
7. Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. Ma Y; Zhang H; Zhang Y; Hu R; Jiang M; Zhang R; Lv H; Tian J; Chu L; Zhang J; Xue Q; Yip HL; Xia R; Li X; Huang W ACS Appl Mater Interfaces; 2019 Jan; 11(3):3044-3052. PubMed ID: 30585492 [TBL] [Abstract][Full Text] [Related]
8. A Deformable Additive on Defects Passivation and Phase Segregation Inhibition Enables the Efficiency of Inverted Perovskite Solar Cells over 24. Xie L; Liu J; Li J; Liu C; Pu Z; Xu P; Wang Y; Meng Y; Yang M; Ge Z Adv Mater; 2023 Sep; 35(38):e2302752. PubMed ID: 37308171 [TBL] [Abstract][Full Text] [Related]
9. Pyridalthiadiazole-Based Molecular Chromophores for Defect Passivation Enables High-Performance Perovskite Solar Cells. Min Z; Wang B; Kong Y; Guo J; Ling X; Ma W; Yuan J ChemSusChem; 2024 Sep; ():e202401852. PubMed ID: 39345007 [TBL] [Abstract][Full Text] [Related]
10. An Efficient Trap Passivator for Perovskite Solar Cells: Poly(propylene glycol) bis(2-aminopropyl ether). Chen N; Yi X; Zhuang J; Wei Y; Zhang Y; Wang F; Cao S; Li C; Wang J Nanomicro Lett; 2020 Aug; 12(1):177. PubMed ID: 34138219 [TBL] [Abstract][Full Text] [Related]
11. Up-Scalable Fabrication of SnO Tong G; Ono LK; Liu Y; Zhang H; Bu T; Qi Y Nanomicro Lett; 2021 Jul; 13(1):155. PubMed ID: 34244883 [TBL] [Abstract][Full Text] [Related]
12. Perovskite interface defect passivation with poly(ethylene oxide) for improving power conversion efficiency of the inverted solar cells. Duan C; Zhang X; Du Z; Chen J; El-Bashar R; Obayya SSA; Hameed M; Dai J Opt Express; 2023 Jun; 31(12):20364-20376. PubMed ID: 37381432 [TBL] [Abstract][Full Text] [Related]
13. Bicyclopentadithiophene-Based Organic Semiconductor for Stable and High-Performance Perovskite Solar Cells Exceeding 22. Velusamy A; Afraj SN; Guo YS; Ni JS; Huang HL; Su TY; Ezhumalai Y; Liu CL; Chiang CH; Chen MC; Wu CG ACS Appl Mater Interfaces; 2024 Feb; 16(5):6162-6175. PubMed ID: 38277509 [TBL] [Abstract][Full Text] [Related]
14. Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells. Du B; He K; Zhao X; Li B Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177158 [TBL] [Abstract][Full Text] [Related]
15. Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules. Xin D; Tie S; Yuan R; Zheng X; Zhu J; Zhang WH ACS Appl Mater Interfaces; 2019 Nov; 11(47):44233-44240. PubMed ID: 31696708 [TBL] [Abstract][Full Text] [Related]
16. An in-situ defect passivation through a green anti-solvent approach for high-efficiency and stable perovskite solar cells. Liu C; Huang L; Zhou X; Wang X; Yao J; Liu Z; Liu SF; Ma W; Xu B Sci Bull (Beijing); 2021 Jul; 66(14):1419-1428. PubMed ID: 36654368 [TBL] [Abstract][Full Text] [Related]
17. Perfection of Perovskite Grain Boundary Passivation by Rhodium Incorporation for Efficient and Stable Solar Cells. Liu W; Liu N; Ji S; Hua H; Ma Y; Hu R; Zhang J; Chu L; Li X; Huang W Nanomicro Lett; 2020 Jun; 12(1):119. PubMed ID: 34138140 [TBL] [Abstract][Full Text] [Related]
18. F-Type Pseudo-Halide Anions for High-Efficiency and Stable Wide-Band-Gap Inverted Perovskite Solar Cells with Fill Factor Exceeding 84. Tao J; Liu X; Shen J; Han S; Guan L; Fu G; Kuang DB; Yang S ACS Nano; 2022 Jul; 16(7):10798-10810. PubMed ID: 35796580 [TBL] [Abstract][Full Text] [Related]
19. Ionic Liquid-Assisted Crystallization and Defect Passivation for Efficient Perovskite Solar Cells with Enhanced Open-Circuit Voltage. Hu P; Huang S; Guo M; Li Y; Wei M ChemSusChem; 2022 Aug; 15(15):e202200819. PubMed ID: 35642752 [TBL] [Abstract][Full Text] [Related]
20. Synchronous Surface Reconstruction and Defect Passivation for High-Performance Inorganic Perovskite Solar Cells. Zhang H; Tian Q; Gu X; Zhang S; Wang Z; Zuo X; Liu Y; Zhao K; Liu SF Small; 2022 Aug; 18(33):e2202690. PubMed ID: 35859526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]