These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38175074)

  • 1. OP-FCNN: an optronic fully convolutional neural network for imaging through scattering media.
    Huang Z; Gu Z; Shi M; Gao Y; Liu X
    Opt Express; 2024 Jan; 32(1):444-456. PubMed ID: 38175074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensor-to-Image Based Neural Networks: A Reliable Reconstruction Method for Diffuse Optical Imaging of High-Scattering Media.
    Yuliansyah DR; Pan MC; Hsu YF
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optronic convolutional neural networks of multi-layers with different functions executed in optics for image classification.
    Gu Z; Gao Y; Liu X
    Opt Express; 2021 Feb; 29(4):5877-5889. PubMed ID: 33726120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of Conditional Relatedness Between Genes Using Fully Convolutional Neural Network.
    Wang Y; Zhang S; Yang L; Yang S; Tian Y; Ma Q
    Front Genet; 2019; 10():1009. PubMed ID: 31695723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based object classification through multimode fiber via a CNN-architecture SpeckleNet.
    Wang P; Di J
    Appl Opt; 2018 Oct; 57(28):8258-8263. PubMed ID: 30461775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-to-all lightweight Fourier channel attention convolutional neural network for speckle reconstructions.
    Lan B; Wang H; Wang Y
    J Opt Soc Am A Opt Image Sci Vis; 2022 Dec; 39(12):2238-2245. PubMed ID: 36520741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attention-aware fully convolutional neural network with convolutional long short-term memory network for ultrasound-based motion tracking.
    Huang P; Yu G; Lu H; Liu D; Xing L; Yin Y; Kovalchuk N; Xing L; Li D
    Med Phys; 2019 May; 46(5):2275-2285. PubMed ID: 30912590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning for Automatic Segmentation of Oral and Oropharyngeal Cancer Using Narrow Band Imaging: Preliminary Experience in a Clinical Perspective.
    Paderno A; Piazza C; Del Bon F; Lancini D; Tanagli S; Deganello A; Peretti G; De Momi E; Patrini I; Ruperti M; Mattos LS; Moccia S
    Front Oncol; 2021; 11():626602. PubMed ID: 33842330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Neural Network for Visual Stimulus-Based Reaction Time Estimation Using the Periodogram of Single-Trial EEG.
    Chowdhury MSN; Dutta A; Robison MK; Blais C; Brewer GA; Bliss DW
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33120869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput imaging through dynamic scattering media based on speckle de-blurring.
    Zhang W; Zhu S; Liu L; Bai L; Han J; Guo E
    Opt Express; 2023 Oct; 31(22):36503-36520. PubMed ID: 38017801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep speckle reassignment: towards bootstrapped imaging in complex scattering states with limited speckle grains.
    Zhu S; Guo E; Zhang W; Bai L; Liu H; Han J
    Opt Express; 2023 Jun; 31(12):19588-19603. PubMed ID: 37381370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully Convolutional Neural Networks Improve Abdominal Organ Segmentation.
    Bobo MF; Bao S; Huo Y; Yao Y; Virostko J; Plassard AJ; Lyu I; Assad A; Abramson RG; Hilmes MA; Landman BA
    Proc SPIE Int Soc Opt Eng; 2018 Mar; 10574():. PubMed ID: 29887665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain and lesion segmentation in multiple sclerosis using fully convolutional neural networks: A large-scale study.
    Gabr RE; Coronado I; Robinson M; Sujit SJ; Datta S; Sun X; Allen WJ; Lublin FD; Wolinsky JS; Narayana PA
    Mult Scler; 2020 Sep; 26(10):1217-1226. PubMed ID: 31190607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating cardiovascular model building with convolutional neural networks.
    Maher G; Wilson N; Marsden A
    Med Biol Eng Comput; 2019 Oct; 57(10):2319-2335. PubMed ID: 31446517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synapse cell optimization and back-propagation algorithm implementation in a domain wall synapse based crossbar neural network for scalable on-chip learning.
    Kaushik D; Sharda J; Bhowmik D
    Nanotechnology; 2020 Sep; 31(36):364004. PubMed ID: 32454478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepVOG: Open-source pupil segmentation and gaze estimation in neuroscience using deep learning.
    Yiu YH; Aboulatta M; Raiser T; Ophey L; Flanagin VL; Zu Eulenburg P; Ahmadi SA
    J Neurosci Methods; 2019 Aug; 324():108307. PubMed ID: 31176683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distillation-Guided Residual Learning for Binary Convolutional Neural Networks.
    Ye J; Wang J; Zhang S
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7765-7777. PubMed ID: 34156953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BTC-fCNN: Fast Convolution Neural Network for Multi-class Brain Tumor Classification.
    Abd El-Wahab BS; Nasr ME; Khamis S; Ashour AS
    Health Inf Sci Syst; 2023 Dec; 11(1):3. PubMed ID: 36606077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone tumor examination based on FCNN-4s and CRF fine segmentation fusion algorithm.
    Wu S; Bai X; Cai L; Wang L; Zhang X; Ke Q; Huang J
    J Bone Oncol; 2023 Oct; 42():100502. PubMed ID: 37736418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.