BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38175076)

  • 21. The Effect of Software Versions on the Measurement of Retinal Vascular Densities Using Optical Coherence Tomography Angiography.
    Wang H; Hu H; Gregori G; Zhang J; Jiang H; Wang J
    Curr Eye Res; 2021 Mar; 46(3):341-349. PubMed ID: 32767906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications.
    Kashani AH; Chen CL; Gahm JK; Zheng F; Richter GM; Rosenfeld PJ; Shi Y; Wang RK
    Prog Retin Eye Res; 2017 Sep; 60():66-100. PubMed ID: 28760677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reference database of total retinal vessel surface area derived from volume-rendered optical coherence tomography angiography.
    Maloca PM; Feu-Basilio S; Schottenhamml J; Valmaggia P; Scholl HPN; Rosinés-Fonoll J; Marin-Martinez S; Inglin N; Reich M; Lange C; Egan C; Zweifel S; Tufail A; Spaide RF; Zarranz-Ventura J
    Sci Rep; 2022 Mar; 12(1):3695. PubMed ID: 35256644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic Optical Coherence Tomography Angiographs for Detailed Retinal Vessel Segmentation Without Human Annotations.
    Kreitner L; Paetzold JC; Rauch N; Chen C; Hagag AM; Fayed AE; Sivaprasad S; Rausch S; Weichsel J; Menze BH; Harders M; Knier B; Rueckert D; Menten MJ
    IEEE Trans Med Imaging; 2024 Jun; 43(6):2061-2073. PubMed ID: 38224512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative Comparison Between Optical Coherence Tomography Angiography and Fundus Fluorescein Angiography Images: Effect of Vessel Enhancement.
    Mochi T; Anegondi N; Girish M; Jayadev C; Sinha Roy A
    Ophthalmic Surg Lasers Imaging Retina; 2018 Nov; 49(11):e175-e181. PubMed ID: 30457653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated Segmentation of Optical Coherence Tomography Angiography Images: Benchmark Data and Clinically Relevant Metrics.
    Giarratano Y; Bianchi E; Gray C; Morris A; MacGillivray T; Dhillon B; Bernabeu MO
    Transl Vis Sci Technol; 2020 Dec; 9(13):5. PubMed ID: 33344049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural Networks Application for Accurate Retina Vessel Segmentation from OCT Fundus Reconstruction.
    Marciniak T; Stankiewicz A; Zaradzki P
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of retinal vessel quantity within individual retinal structural layers using optical coherence tomography angiography.
    Chanwimol K; Hirano T; Bedolla A; Tepelus T; Taweebanjongsin W; Marion KM; Sadda S
    Graefes Arch Clin Exp Ophthalmol; 2020 Oct; 258(10):2111-2116. PubMed ID: 32556529
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diagnosing Diabetic Retinopathy in OCTA Images Based on Multilevel Information Fusion Using a Deep Learning Framework.
    Li Q; Zhu XR; Sun G; Zhang L; Zhu M; Tian T; Guo C; Mazhar S; Yang JK; Li Y
    Comput Math Methods Med; 2022; 2022():4316507. PubMed ID: 35966243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TCU-Net: Transformer Embedded in Convolutional U-Shaped Network for Retinal Vessel Segmentation.
    Shi Z; Li Y; Zou H; Zhang X
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated Retinal Vascular Topological Information Extraction From OCTA.
    Lee AX; Saxena A; Chua J; Schmetterer L; Tan B
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1839-1842. PubMed ID: 36086557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo rotational three-dimensional OCTA analysis of microaneurysms in the human diabetic retina.
    Borrelli E; Sacconi R; Brambati M; Bandello F; Querques G
    Sci Rep; 2019 Nov; 9(1):16789. PubMed ID: 31728070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conjunctival and Intrascleral Vasculatures Assessed Using Anterior Segment Optical Coherence Tomography Angiography in Normal Eyes.
    Akagi T; Uji A; Huang AS; Weinreb RN; Yamada T; Miyata M; Kameda T; Ikeda HO; Tsujikawa A
    Am J Ophthalmol; 2018 Dec; 196():1-9. PubMed ID: 30099035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous segmentation and classification of the retinal arteries and veins from color fundus images.
    Morano J; Hervella ÁS; Novo J; Rouco J
    Artif Intell Med; 2021 Aug; 118():102116. PubMed ID: 34412839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disentangled Representation Learning for OCTA Vessel Segmentation With Limited Training Data.
    Liu Y; Carass A; Zuo L; He Y; Han S; Gregori L; Murray S; Mishra R; Lei J; Calabresi PA; Saidha S; Prince JL
    IEEE Trans Med Imaging; 2022 Dec; 41(12):3686-3698. PubMed ID: 35862335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rotational Three-dimensional OCTA: a Notable New Imaging Tool to Characterize Type 3 Macular Neovascularization.
    Borrelli E; Sacconi R; Klose G; de Sisternes L; Bandello F; Querques G
    Sci Rep; 2019 Nov; 9(1):17053. PubMed ID: 31745216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization.
    Meyer JH; Larsen PP; Strack C; Harmening WM; Krohne TU; Holz FG; Schmitz-Valckenberg S
    Exp Eye Res; 2019 Jul; 184():162-171. PubMed ID: 31002822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Segmentation of Low-Light Optical Coherence Tomography Angiography Images under the Constraints of Vascular Network Topology.
    Li Z; Huang G; Zou B; Chen W; Zhang T; Xu Z; Cai K; Wang T; Sun Y; Wang Y; Jin K; Huang X
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of optical coherence tomography angiography in fundus vascular abnormalities.
    Yu S; Lu J; Cao D; Liu R; Liu B; Li T; Luo Y; Lu L
    BMC Ophthalmol; 2016 Jul; 16():107. PubMed ID: 27412442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic 3D adaptive vessel segmentation based on linear relationship between intensity and complex-decorrelation in optical coherence tomography angiography.
    Zhang Y; Li H; Cao T; Chen R; Qiu H; Gu Y; Li P
    Quant Imaging Med Surg; 2021 Mar; 11(3):895-906. PubMed ID: 33654663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.