BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38175154)

  • 1. Implantable bioelectrodes: challenges, strategies, and future directions.
    Hu M; Liang C; Wang D
    Biomater Sci; 2024 Jan; 12(2):270-287. PubMed ID: 38175154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implantable polypyrrole bioelectrodes inducing anti-inflammatory macrophage polarization for long-term in vivo signal recording.
    Lee S; Park S; Park J; Lee JY
    Acta Biomater; 2023 Sep; 168():458-469. PubMed ID: 37414115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foreign Body Reaction to Implantable Biosensors: Effects of Tissue Trauma and Implant Size.
    Wang Y; Vaddiraju S; Gu B; Papadimitrakopoulos F; Burgess DJ
    J Diabetes Sci Technol; 2015 Aug; 9(5):966-77. PubMed ID: 26306495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-Matchable and Implantable Batteries Toward Biomedical Applications.
    Yan B; Zhao Y; Peng H
    Small Methods; 2023 Oct; 7(10):e2300501. PubMed ID: 37469190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allometrically scaling tissue forces drive pathological foreign-body responses to implants via Rac2-activated myeloid cells.
    Padmanabhan J; Chen K; Sivaraj D; Henn D; Kuehlmann BA; Kussie HC; Zhao ET; Kahn A; Bonham CA; Dohi T; Beck TC; Trotsyuk AA; Stern-Buchbinder ZA; Than PA; Hosseini HS; Barrera JA; Magbual NJ; Leeolou MC; Fischer KS; Tigchelaar SS; Lin JQ; Perrault DP; Borrelli MR; Kwon SH; Maan ZN; Dunn JCY; Nazerali R; Januszyk M; Prantl L; Gurtner GC
    Nat Biomed Eng; 2023 Nov; 7(11):1419-1436. PubMed ID: 37749310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomedical and Tissue Engineering Strategies to Control Foreign Body Reaction to Invasive Neural Electrodes.
    Gori M; Vadalà G; Giannitelli SM; Denaro V; Di Pino G
    Front Bioeng Biotechnol; 2021; 9():659033. PubMed ID: 34113605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced strategies to thwart foreign body response to implantable devices.
    Capuani S; Malgir G; Chua CYX; Grattoni A
    Bioeng Transl Med; 2022 Sep; 7(3):e10300. PubMed ID: 36176611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable Conductive Hydrogels with Tunable Degradability as Novel Implantable Bioelectrodes.
    Park J; Lee S; Lee M; Kim HS; Lee JY
    Small; 2023 May; 19(21):e2300250. PubMed ID: 36828790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifibrotic strategies for medical devices.
    Welch NG; Winkler DA; Thissen H
    Adv Drug Deliv Rev; 2020 Dec; 167():109-120. PubMed ID: 32553685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress of electroactive interface in neural engineering.
    Shan Y; Cui X; Chen X; Li Z
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Jan; 15(1):e01827. PubMed ID: 35715994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the Overlooked Roles and Mechanisms of Fibroblasts in the Foreign Body Response.
    Parker JB; Griffin MF; Spielman AF; Wan DC; Longaker MT
    Adv Wound Care (New Rochelle); 2023 Feb; 12(2):85-96. PubMed ID: 35819293
    [No Abstract]   [Full Text] [Related]  

  • 12. Bijel-templated implantable biomaterials for enhancing tissue integration and vascularization.
    Thorson TJ; Gurlin RE; Botvinick EL; Mohraz A
    Acta Biomater; 2019 Aug; 94():173-182. PubMed ID: 31233892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Soft Zwitterionic Hydrogel as Potential Coating on a Polyimide Surface to Reduce Foreign Body Reaction to Intraneural Electrodes.
    Gori M; Giannitelli SM; Vadalà G; Papalia R; Zollo L; Sanchez M; Trombetta M; Rainer A; Di Pino G; Denaro V
    Molecules; 2022 May; 27(10):. PubMed ID: 35630604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The foreign body response: emerging cell types and considerations for targeted therapeutics.
    Yang B; Rutkowski N; Elisseeff J
    Biomater Sci; 2023 Dec; 11(24):7730-7747. PubMed ID: 37904536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials Strategies to Overcome the Foreign Body Response.
    Zhou X; Wang Y; Ji J; Zhang P
    Adv Healthc Mater; 2024 Apr; ():e2304478. PubMed ID: 38666550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug Distribution in Microspheres Enhances Their Anti-Inflammatory Properties in the Gottingen Minipig.
    Kastellorizios M; Tipnis N; Papadimitrakopoulos F; Burgess DJ
    Mol Pharm; 2015 Sep; 12(9):3332-8. PubMed ID: 26237140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implant Fibrosis and the Underappreciated Role of Myofibroblasts in the Foreign Body Reaction.
    Noskovicova N; Hinz B; Pakshir P
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards non-wettable neural electrodes for a minimized foreign body reaction.
    Vajari DA; Sharbatian A; Devkota K; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3919-3922. PubMed ID: 36086668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfabricated bioelectrodes on self-expandable NiTi thin film devices for implants and diagnostic instruments.
    Chluba C; Siemsen K; Bechtold C; Zamponi C; Selhuber-Unkel C; Quandt E; Lima de Miranda R
    Biosens Bioelectron; 2020 Apr; 153():112034. PubMed ID: 31989946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility of common implantable sensor materials in a tumor xenograft model.
    Gray ME; Meehan J; Blair EO; Ward C; Langdon SP; Morrison LR; Marland JRK; Tsiamis A; Kunkler IH; Murray A; Argyle D
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1620-1633. PubMed ID: 30367816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.