These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 38175358)
1. Highly Aligned Ternary Nanofiber Matrices Loaded with MXene Expedite Regeneration of Volumetric Muscle Loss. Kang MS; Yu Y; Park R; Heo HJ; Lee SH; Hong SW; Kim YH; Han DW Nanomicro Lett; 2024 Jan; 16(1):73. PubMed ID: 38175358 [TBL] [Abstract][Full Text] [Related]
2. Skeletal muscle regeneration with 3D bioprinted hyaluronate/gelatin hydrogels incorporating MXene nanoparticles. Jo HJ; Kang MS; Heo HJ; Jang HJ; Park R; Hong SW; Kim YH; Han DW Int J Biol Macromol; 2024 Apr; 265(Pt 1):130696. PubMed ID: 38458288 [TBL] [Abstract][Full Text] [Related]
3. Ternary MXene-loaded PLCL/collagen nanofibrous scaffolds that promote spontaneous osteogenic differentiation. Lee SH; Jeon S; Qu X; Kang MS; Lee JH; Han DW; Hong SW Nano Converg; 2022 Aug; 9(1):38. PubMed ID: 36029392 [TBL] [Abstract][Full Text] [Related]
4. Role of integrin α7β1 signaling in myoblast differentiation on aligned polydioxanone scaffolds. McClure MJ; Clark NM; Hyzy SL; Chalfant CE; Olivares-Navarrete R; Boyan BD; Schwartz Z Acta Biomater; 2016 Jul; 39():44-54. PubMed ID: 27142254 [TBL] [Abstract][Full Text] [Related]
5. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809 [TBL] [Abstract][Full Text] [Related]
6. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. Shin YC; Lee JH; Jin L; Kim MJ; Kim YJ; Hyun JK; Jung TG; Hong SW; Han DW J Nanobiotechnology; 2015 Mar; 13():21. PubMed ID: 25886153 [TBL] [Abstract][Full Text] [Related]
7. Ternary Aligned Nanofibers of RGD Peptide-Displaying M13 Bacteriophage/PLGA/Graphene Oxide for Facilitated Myogenesis. Shin YC; Kim C; Song SJ; Jun S; Kim CS; Hong SW; Hyon SH; Han DW; Oh JW Nanotheranostics; 2018; 2(2):144-156. PubMed ID: 29577018 [TBL] [Abstract][Full Text] [Related]
8. Nanoenzyme-Reinforced Multifunctional Scaffold Based on Ti Zheng H; Cheng F; Guo D; He X; Zhou L; Zhang Q Nano Lett; 2023 Aug; 23(16):7379-7388. PubMed ID: 37578316 [TBL] [Abstract][Full Text] [Related]
9. Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment. Patel A; Mukundan S; Wang W; Karumuri A; Sant V; Mukhopadhyay SM; Sant S Acta Biomater; 2016 Mar; 32():77-88. PubMed ID: 26768231 [TBL] [Abstract][Full Text] [Related]
10. Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices. Shin YC; Lee JH; Kim MJ; Hong SW; Kim B; Hyun JK; Choi YS; Park JC; Han DW J Biol Eng; 2015; 9():22. PubMed ID: 26609319 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of mitochondrial energy metabolism by melatonin promotes vascularized skeletal muscle regeneration in a volumetric muscle loss model. Ge X; Wang C; Yang G; Maimaiti D; Hou M; Liu H; Yang H; Chen X; Xu Y; He F Free Radic Biol Med; 2024 Jan; 210():146-157. PubMed ID: 38008130 [TBL] [Abstract][Full Text] [Related]
12. Harnessing Fiber Diameter-Dependent Effects of Myoblasts Toward Biomimetic Scaffold-Based Skeletal Muscle Regeneration. Narayanan N; Jiang C; Wang C; Uzunalli G; Whittern N; Chen D; Jones OG; Kuang S; Deng M Front Bioeng Biotechnol; 2020; 8():203. PubMed ID: 32266234 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic glycosaminoglycan-based scaffolds improve skeletal muscle regeneration in a Murine volumetric muscle loss model. Narayanan N; Jia Z; Kim KH; Kuang L; Lengemann P; Shafer G; Bernal-Crespo V; Kuang S; Deng M Bioact Mater; 2021 Apr; 6(4):1201-1213. PubMed ID: 33163701 [TBL] [Abstract][Full Text] [Related]
16. Injectable conductive micro-cryogel as a muscle stem cell carrier improves myogenic proliferation, differentiation and in situ skeletal muscle regeneration. Zhang Z; Zhao X; Wang C; Huang Y; Han Y; Guo B Acta Biomater; 2022 Oct; 151():197-209. PubMed ID: 36002125 [TBL] [Abstract][Full Text] [Related]
17. Nanofiber Yarn/Hydrogel Core-Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation. Wang L; Wu Y; Guo B; Ma PX ACS Nano; 2015 Sep; 9(9):9167-79. PubMed ID: 26280983 [TBL] [Abstract][Full Text] [Related]
18. In-vitro effectiveness of poly-β-alanine reinforced poly(3-hydroxybutyrate) fibrous scaffolds for skeletal muscle regeneration. Konuk Tokak E; Çetin Altındal D; Akdere ÖE; Gümüşderelioğlu M Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112528. PubMed ID: 34857307 [TBL] [Abstract][Full Text] [Related]
19. Curcumin-activated Wnt5a pathway mediates Ca Wang MY; Yang JM; Wu Y; Li H; Zhong YB; Luo Y; Xie RL J Cachexia Sarcopenia Muscle; 2024 Oct; 15(5):1834-1849. PubMed ID: 38982896 [TBL] [Abstract][Full Text] [Related]
20. Electrospun Poly(L-lactide-co-ε-caprolactone) Scaffold Potentiates C2C12 Myoblast Bioactivity and Acts as a Stimulus for Cell Commitment in Skeletal Muscle Myogenesis. Pacilio S; Costa R; Papa V; Rodia MT; Gotti C; Pagnotta G; Cenacchi G; Focarete ML Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]