These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 38175687)
61. CircRNA FGFR3 induces epithelial-mesenchymal transition of ovarian cancer by regulating miR-29a-3p/E2F1 axis. Zhou J; Dong ZN; Qiu BQ; Hu M; Liang XQ; Dai X; Hong D; Sun YF Aging (Albany NY); 2020 Jul; 12(14):14080-14091. PubMed ID: 32668414 [TBL] [Abstract][Full Text] [Related]
62. Adipocyte pyroptosis occurs in omental tumor microenvironment and is associated with chemoresistance of ovarian cancer. Lin CN; Liang YL; Tsai HF; Wu PY; Huang LY; Lin YH; Kang CY; Yao CL; Shen MR; Hsu KF J Biomed Sci; 2024 Jun; 31(1):62. PubMed ID: 38862973 [TBL] [Abstract][Full Text] [Related]
63. Siglec-9 Wang Y; He M; Zhang C; Cao K; Zhang G; Yang M; Huang Y; Jiang W; Liu H J Immunother Cancer; 2023 Sep; 11(9):. PubMed ID: 37709296 [TBL] [Abstract][Full Text] [Related]
65. Multi-Omics Analysis Showed the Clinical Value of Gene Signatures of C1QC Li X; Zhang Q; Chen G; Luo D Front Immunol; 2021; 12():694801. PubMed ID: 34295336 [TBL] [Abstract][Full Text] [Related]
66. Glycosylation-related genes mediated prognostic signature contribute to prognostic prediction and treatment options in ovarian cancer: based on bulk and single‑cell RNA sequencing data. You Y; Yang Q BMC Cancer; 2024 Feb; 24(1):207. PubMed ID: 38355446 [TBL] [Abstract][Full Text] [Related]
67. Identification of the immune subtype of ovarian cancer patients by integrated analyses of transcriptome and single-cell sequencing data. Wang S; Wang X; Xia X; Zhang T; Yi M; Li Z; Jiang L; Yang Y; Fu J; Fang X Sci Rep; 2022 Aug; 12(1):13296. PubMed ID: 35918500 [TBL] [Abstract][Full Text] [Related]
68. Overexpression of Long Noncoding RNA H19 Downregulates miR-140-5p and Activates PI3K/AKT Signaling Pathway to Promote Invasion, Migration and Epithelial-Mesenchymal Transition of Ovarian Cancer Cells. Xu H; Ding Y; Yang X Biomed Res Int; 2021; 2021():6619730. PubMed ID: 34250088 [TBL] [Abstract][Full Text] [Related]
69. HIF-2α-dependent TGFBI promotes ovarian cancer chemoresistance by activating PI3K/Akt pathway to inhibit apoptosis and facilitate DNA repair process. Ma S; Wang J; Cui Z; Yang X; Cui X; Li X; Zhao L Sci Rep; 2024 Feb; 14(1):3870. PubMed ID: 38365849 [TBL] [Abstract][Full Text] [Related]
70. Blockade of C5a receptor unleashes tumor-associated macrophage antitumor response and enhances CXCL9-dependent CD8 Luan X; Lei T; Fang J; Liu X; Fu H; Li Y; Chu W; Jiang P; Tong C; Qi H; Fu Y Mol Ther; 2024 Feb; 32(2):469-489. PubMed ID: 38098230 [TBL] [Abstract][Full Text] [Related]
71. Targeting tumor-associated macrophages for cancer immunotherapy. Shu Y; Cheng P Biochim Biophys Acta Rev Cancer; 2020 Dec; 1874(2):188434. PubMed ID: 32956767 [TBL] [Abstract][Full Text] [Related]
72. Large, Anionic Liposomes Enable Targeted Intraperitoneal Delivery of a TLR 7/8 Agonist To Repolarize Ovarian Tumors' Microenvironment. Kang Y; Flores L; Ngai HW; Cornejo YR; Haber T; McDonald M; Moreira DF; Gonzaga JM; Abidi W; Zhang Y; Hammad M; Kortylewski M; Aboody KS; Berlin JM Bioconjug Chem; 2021 Aug; 32(8):1581-1592. PubMed ID: 34289694 [TBL] [Abstract][Full Text] [Related]
73. Relationship between Epithelial-to-Mesenchymal Transition and Tumor-Associated Macrophages in Colorectal Liver Metastases. Gazzillo A; Polidoro MA; Soldani C; Franceschini B; Lleo A; Donadon M Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555840 [TBL] [Abstract][Full Text] [Related]
74. Ovarian cancer subtypes based on the regulatory genes of RNA modifications: Novel prediction model of prognosis. Zheng P; Li N; Zhan X Front Endocrinol (Lausanne); 2022; 13():972341. PubMed ID: 36545327 [TBL] [Abstract][Full Text] [Related]
75. M2-like tumor-associated macrophages promote epithelial-mesenchymal transition through the transforming growth factor β/Smad/zinc finger e-box binding homeobox pathway with increased metastatic potential and tumor cell proliferation in lung squamous cell carcinoma. Sumitomo R; Menju T; Shimazu Y; Toyazaki T; Chiba N; Miyamoto H; Hirayama Y; Nishikawa S; Tanaka S; Yutaka Y; Yamada Y; Nakajima D; Ohsumi A; Hamaji M; Sato A; Yoshizawa A; Huang CL; Haga H; Date H Cancer Sci; 2023 Dec; 114(12):4521-4534. PubMed ID: 37806311 [TBL] [Abstract][Full Text] [Related]
76. Tumor-associated macrophages in immunotherapy. Yan S; Wan G FEBS J; 2021 Nov; 288(21):6174-6186. PubMed ID: 33492779 [TBL] [Abstract][Full Text] [Related]
77. Tumor-associated macrophages: new insights on their metabolic regulation and their influence in cancer immunotherapy. Xiao L; Wang Q; Peng H Front Immunol; 2023; 14():1157291. PubMed ID: 37426676 [TBL] [Abstract][Full Text] [Related]
78. The Non-N Xu J; Gao Z; Liu K; Fan Y; Zhang Z; Xue H; Guo X; Zhang P; Deng L; Wang S; Wang H; Wang Q; Zhao R; Li G Front Immunol; 2021; 12():809808. PubMed ID: 35154083 [TBL] [Abstract][Full Text] [Related]
79. [Effect of tumor-associated macrophages in promoting epithelial-mesenchymal transition of Hep3B hepatoma cells and related mechanisms]. Yao RR; Wang MM; Wang YH Zhonghua Gan Zang Bing Za Zhi; 2018 Apr; 26(4):305-309. PubMed ID: 29996344 [No Abstract] [Full Text] [Related]
80. Tumor-associated macrophages and the tumor immune microenvironment of primary and recurrent epithelial ovarian cancer. Ojalvo LS; Thompson ED; Wang TL; Meeker AK; Shih IM; Fader AN; Cimino-Mathews A; Emens LA Hum Pathol; 2018 Apr; 74():135-147. PubMed ID: 29288043 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]