These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38175759)

  • 1. RPEMHC: improved prediction of MHC-peptide binding affinity by a deep learning approach based on residue-residue pair encoding.
    Wang X; Wu T; Jiang Y; Chen T; Pan D; Jin Z; Xie J; Quan L; Lyu Q
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38175759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting MHC-peptide binding affinity by differential boundary tree.
    Feng P; Zeng J; Ma J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i254-i261. PubMed ID: 34252932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning pan-specific model for interpretable MHC-I peptide binding prediction with improved attention mechanism.
    Jin J; Liu Z; Nasiri A; Cui Y; Louis SY; Zhang A; Zhao Y; Hu J
    Proteins; 2021 Jul; 89(7):866-883. PubMed ID: 33594723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MHCAttnNet: predicting MHC-peptide bindings for MHC alleles classes I and II using an attention-based deep neural model.
    Venkatesh G; Grover A; Srinivasaraghavan G; Rao S
    Bioinformatics; 2020 Jul; 36(Suppl_1):i399-i406. PubMed ID: 32657386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepMHCII: a novel binding core-aware deep interaction model for accurate MHC-II peptide binding affinity prediction.
    You R; Qu W; Mamitsuka H; Zhu S
    Bioinformatics; 2022 Jun; 38(Suppl 1):i220-i228. PubMed ID: 35758790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepNetBim: deep learning model for predicting HLA-epitope interactions based on network analysis by harnessing binding and immunogenicity information.
    Yang X; Zhao L; Wei F; Li J
    BMC Bioinformatics; 2021 May; 22(1):231. PubMed ID: 33952199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MHCRoBERTa: pan-specific peptide-MHC class I binding prediction through transfer learning with label-agnostic protein sequences.
    Wang F; Wang H; Wang L; Lu H; Qiu S; Zang T; Zhang X; Hu Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35443027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico prediction of peptide-MHC binding affinity using SVRMHC.
    Liu W; Wan J; Meng X; Flower DR; Li T
    Methods Mol Biol; 2007; 409():283-91. PubMed ID: 18450008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PepDist: a new framework for protein-peptide binding prediction based on learning peptide distance functions.
    Hertz T; Yanover C
    BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S3. PubMed ID: 16723006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of Uncertainty in Peptide-MHC Binding Prediction Improves High-Affinity Peptide Selection for Therapeutic Design.
    Zeng H; Gifford DK
    Cell Syst; 2019 Aug; 9(2):159-166.e3. PubMed ID: 31176619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BERTMHC: improved MHC-peptide class II interaction prediction with transformer and multiple instance learning.
    Cheng J; Bendjama K; Rittner K; Malone B
    Bioinformatics; 2021 Nov; 37(22):4172-4179. PubMed ID: 34096999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STMHCpan, an accurate Star-Transformer-based extensible framework for predicting MHC I allele binding peptides.
    Ye Z; Li S; Mi X; Shao B; Dai Z; Ding B; Feng S; Sun B; Shen Y; Xiao Z
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ACME: pan-specific peptide-MHC class I binding prediction through attention-based deep neural networks.
    Hu Y; Wang Z; Hu H; Wan F; Chen L; Xiong Y; Wang X; Zhao D; Huang W; Zeng J
    Bioinformatics; 2019 Dec; 35(23):4946-4954. PubMed ID: 31120490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepMHCI: an anchor position-aware deep interaction model for accurate MHC-I peptide binding affinity prediction.
    Qu W; You R; Mamitsuka H; Zhu S
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37669154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IConMHC: a deep learning convolutional neural network model to predict peptide and MHC-I binding affinity.
    Pei B; Hsu YH
    Immunogenetics; 2020 Jul; 72(5):295-304. PubMed ID: 32577798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MHC2MIL: a novel multiple instance learning based method for MHC-II peptide binding prediction by considering peptide flanking region and residue positions.
    Xu Y; Luo C; Qian M; Huang X; Zhu S
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S9. PubMed ID: 25521198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-aware deep model for MHC-II peptide binding affinity prediction.
    Yu Y; Zu L; Jiang J; Wu Y; Wang Y; Xu M; Liu Q
    BMC Genomics; 2024 Jan; 25(1):127. PubMed ID: 38291350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RLpMIEC: High-Affinity Peptide Generation Targeting Major Histocompatibility Complex-I Guided and Interpreted by Interaction Spectrum-Navigated Reinforcement Learning.
    Deng Q; Wang Z; Xiang S; Wang Q; Liu Y; Hou T; Sun H
    J Chem Inf Model; 2024 Aug; 64(16):6432-6449. PubMed ID: 39118363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.