These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 38175759)
21. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships. Hattotuwagama CK; Doytchinova IA; Flower DR Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004 [TBL] [Abstract][Full Text] [Related]
22. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. Nielsen M; Lundegaard C; Lund O BMC Bioinformatics; 2007 Jul; 8():238. PubMed ID: 17608956 [TBL] [Abstract][Full Text] [Related]
23. MHCSeqNet2-improved peptide-class I MHC binding prediction for alleles with low data. Wongklaew P; Sriswasdi S; Chuangsuwanich E Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38152987 [TBL] [Abstract][Full Text] [Related]
24. MHCSeqNet: a deep neural network model for universal MHC binding prediction. Phloyphisut P; Pornputtapong N; Sriswasdi S; Chuangsuwanich E BMC Bioinformatics; 2019 May; 20(1):270. PubMed ID: 31138107 [TBL] [Abstract][Full Text] [Related]
25. A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01. Pedersen LE; Rasmussen M; Harndahl M; Nielsen M; Buus S; Jungersen G Immunogenetics; 2016 Feb; 68(2):157-65. PubMed ID: 26572135 [TBL] [Abstract][Full Text] [Related]
27. Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms. Rajapakse M; Schmidt B; Feng L; Brusic V BMC Bioinformatics; 2007 Nov; 8():459. PubMed ID: 18031584 [TBL] [Abstract][Full Text] [Related]
28. HLA class I binding prediction via convolutional neural networks. Vang YS; Xie X Bioinformatics; 2017 Sep; 33(17):2658-2665. PubMed ID: 28444127 [TBL] [Abstract][Full Text] [Related]
29. DeepSeqPanII: An Interpretable Recurrent Neural Network Model With Attention Mechanism for Peptide-HLA Class II Binding Prediction. Liu Z; Jin J; Cui Y; Xiong Z; Nasiri A; Zhao Y; Hu J IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2188-2196. PubMed ID: 33886473 [TBL] [Abstract][Full Text] [Related]
30. Accurate modeling of peptide-MHC structures with AlphaFold. Mikhaylov V; Brambley CA; Keller GLJ; Arbuiso AG; Weiss LI; Baker BM; Levine AJ Structure; 2024 Feb; 32(2):228-241.e4. PubMed ID: 38113889 [TBL] [Abstract][Full Text] [Related]
31. In silico design of MHC class I high binding affinity peptides through motifs activation map. Xiao Z; Zhang Y; Yu R; Chen Y; Jiang X; Wang Z; Li S BMC Bioinformatics; 2018 Dec; 19(Suppl 19):516. PubMed ID: 30598069 [TBL] [Abstract][Full Text] [Related]
32. CAPLA: improved prediction of protein-ligand binding affinity by a deep learning approach based on a cross-attention mechanism. Jin Z; Wu T; Chen T; Pan D; Wang X; Xie J; Quan L; Lyu Q Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36688724 [TBL] [Abstract][Full Text] [Related]
33. Binding peptide generation for MHC Class I proteins with deep reinforcement learning. Chen Z; Zhang B; Guo H; Emani P; Clancy T; Jiang C; Gerstein M; Ning X; Cheng C; Min MR Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36692135 [TBL] [Abstract][Full Text] [Related]
34. DeepLigand: accurate prediction of MHC class I ligands using peptide embedding. Zeng H; Gifford DK Bioinformatics; 2019 Jul; 35(14):i278-i283. PubMed ID: 31510651 [TBL] [Abstract][Full Text] [Related]
35. Structural prediction of peptides binding to MHC class I molecules. Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245 [TBL] [Abstract][Full Text] [Related]
36. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment. Carrasco Pro S; Zimic M; Nielsen M Tissue Antigens; 2014 Feb; 83(2):94-100. PubMed ID: 24447175 [TBL] [Abstract][Full Text] [Related]
37. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties. Tung CW; Ho SY Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427 [TBL] [Abstract][Full Text] [Related]