These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38175820)

  • 1. Effects of Organic Surface Contamination on the Mass Accommodation Coefficient of Water: A Molecular Dynamics Study.
    Hartfield J; Bird E; Liang Z
    J Phys Chem B; 2024 Jan; 128(2):585-595. PubMed ID: 38175820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the validity of Schrage relationships for water using molecular dynamics simulations.
    Chandra A; Keblinski P
    J Chem Phys; 2020 Sep; 153(12):124505. PubMed ID: 33003718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport phenomena in the Knudsen layer near an evaporating surface.
    Bird E; Liang Z
    Phys Rev E; 2019 Oct; 100(4-1):043108. PubMed ID: 31770887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal transport across the interface between liquid n-dodecane and its own vapor: A molecular dynamics study.
    Bird E; Gutierrez Plascencia J; Liang Z
    J Chem Phys; 2020 May; 152(18):184701. PubMed ID: 32414243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface.
    Nagayama G; Takematsu M; Mizuguchi H; Tsuruta T
    J Chem Phys; 2015 Jul; 143(1):014706. PubMed ID: 26156491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass accommodation of water: bridging the gap between molecular dynamics simulations and kinetic condensation models.
    Julin J; Shiraiwa M; Miles RE; Reid JP; Pöschl U; Riipinen I
    J Phys Chem A; 2013 Jan; 117(2):410-20. PubMed ID: 23253100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation.
    Zhakhovsky VV; Kryukov AP; Levashov VY; Shishkova IN; Anisimov SI
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18209-18217. PubMed ID: 29666235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonequilibrium kinetic boundary condition at the vapor-liquid interface of argon.
    Ishiyama T; Fujikawa S; Kurz T; Lauterborn W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042406. PubMed ID: 24229188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximum evaporating flux of molecular fluids from a planar liquid surface.
    Bird E; Liang Z
    Phys Rev E; 2020 Oct; 102(4-1):043102. PubMed ID: 33212695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics study on characteristics of reflection and condensation molecules at vapor-liquid equilibrium state.
    Tabe H; Kobayashi K; Fujii H; Watanabe M
    PLoS One; 2021; 16(3):e0248660. PubMed ID: 33725026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaporation coefficient and condensation coefficient of vapor under high gas pressure conditions.
    Ohashi K; Kobayashi K; Fujii H; Watanabe M
    Sci Rep; 2020 May; 10(1):8143. PubMed ID: 32424295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass accommodation at a high-velocity water liquid-vapor interface.
    Nie J; Chandra A; Liang Z; Keblinski P
    J Chem Phys; 2019 Apr; 150(15):154705. PubMed ID: 31005070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the temperature profile across a liquid-vapor interface upon phase change.
    Rokoni A; Sun Y
    J Chem Phys; 2020 Oct; 153(14):144706. PubMed ID: 33086805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular dynamics test of the Hertz-Knudsen equation for evaporating liquids.
    Hołyst R; Litniewski M; Jakubczyk D
    Soft Matter; 2015 Sep; 11(36):7201-6. PubMed ID: 26261011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Vapor-Phase Adsorption of Aroma Molecules on the Water-Vapor Interface using Molecular Dynamics Simulations.
    Sharma T; Erimban S; Azad R; Nam Y; Raj R; Daschakraborty S
    Langmuir; 2023 Dec; 39(49):17889-17902. PubMed ID: 38032075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion and Gas Flow Dynamics in Partially Saturated Smectites.
    Owusu JP; Karalis K; Prasianakis NI; Churakov SV
    J Phys Chem C Nanomater Interfaces; 2023 Jul; 127(29):14425-14438. PubMed ID: 37529667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Perspective on Water Vapor Accommodation into Ice and Its Dependence on Temperature.
    Schlesinger D; Lowe SJ; Olenius T; Kong X; Pettersson JBC; Riipinen I
    J Phys Chem A; 2020 Dec; 124(51):10879-10889. PubMed ID: 33319553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption and solvation of ethanol at the water liquid-vapor interface: a molecular dynamics study.
    Wilson MA; Pohorille A
    J Phys Chem B; 1997 Apr; 101(16):3130-5. PubMed ID: 11540504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mean evaporation and condensation coefficients based on energy dependent condensation probability.
    Bond M; Struchtrup H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061605. PubMed ID: 15697379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.