These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38175862)

  • 1. Sound propagation in realistic interactive 3D scenes with parameterized sources using deep neural operators.
    Borrel-Jensen N; Goswami S; Engsig-Karup AP; Karniadakis GE; Jeong CH
    Proc Natl Acad Sci U S A; 2024 Jan; 121(2):e2312159120. PubMed ID: 38175862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Source and listener directivity for interactive wave-based sound propagation.
    Mehra R; Antani L; Kim S; Manocha D
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):495-503. PubMed ID: 24650976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics-informed neural networks for one-dimensional sound field predictions with parameterized sources and impedance boundaries.
    Borrel-Jensen N; Engsig-Karup AP; Jeong CH
    JASA Express Lett; 2021 Dec; 1(12):122402. PubMed ID: 36154380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.
    Mehra R; Rungta A; Golas A; Ming Lin ; Manocha D
    IEEE Trans Vis Comput Graph; 2015 Apr; 21(4):434-42. PubMed ID: 26357093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Training a deep operator network as a surrogate solver for two-dimensional parabolic-equation models.
    Xu L; Zhang H; Zhang M
    J Acoust Soc Am; 2023 Nov; 154(5):3276-3284. PubMed ID: 37975734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient and accurate sound propagation using adaptive rectangular decomposition.
    Raghuvanshi N; Narain R; Lin MC
    IEEE Trans Vis Comput Graph; 2009; 15(5):789-801. PubMed ID: 19590105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problems.
    Yin M; Zhang E; Yu Y; Karniadakis GE
    Comput Methods Appl Mech Eng; 2022 Dec; 402():. PubMed ID: 37384215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards real-time photorealistic 3D holography with deep neural networks.
    Shi L; Li B; Kim C; Kellnhofer P; Matusik W
    Nature; 2021 Mar; 591(7849):234-239. PubMed ID: 33692557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specular Path Generation and Near-Reflective Diffraction in Interactive Acoustical Simulations.
    Pisha L; Yadegari S
    IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):3609-3621. PubMed ID: 37022015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Approaches to Surrogates for Solving the Diffusion Equation for Mechanistic Real-World Simulations.
    Toledo-Marín JQ; Fox G; Sluka JP; Glazier JA
    Front Physiol; 2021; 12():667828. PubMed ID: 34248661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D
    Jiang Z; Sun L; Yao W; Wu QJ; Xiang L; Ren L
    Phys Med Biol; 2022 Oct; 67(21):. PubMed ID: 36206745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Usability of Individualized Head-Related Transfer Functions in Virtual Reality: Empirical Study With Perceptual Attributes in Sagittal Plane Sound Localization.
    Jenny C; Reuter C
    JMIR Serious Games; 2020 Sep; 8(3):e17576. PubMed ID: 32897232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic Classification and Optimization for Multi-Modal Rendering of Real-World Scenes.
    Schissler C; Loftin C; Manocha D
    IEEE Trans Vis Comput Graph; 2018 Mar; 24(3):1246-1259. PubMed ID: 28207398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A beam tracing method for interactive architectural acoustics.
    Funkhouser T; Tsingos N; Carlbom I; Elko G; Sondhi M; West JE; Pingali G; Min P; Ngan A
    J Acoust Soc Am; 2004 Feb; 115(2):739-56. PubMed ID: 15000186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aural proxies and directionally-varying reverberation for interactive sound propagation in virtual environments.
    Antani L; Manocha D
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):567-75. PubMed ID: 23428440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of virtual acoustics on dynamic auditory distance perception.
    Rungta A; Rewkowski N; Klatzky R; Lin M; Manocha D
    J Acoust Soc Am; 2017 Apr; 141(4):EL427. PubMed ID: 28464642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast prediction of pulsed nonlinear acoustic fields from clinically relevant sources using time-averaged wave envelope approach: comparison of numerical simulations and experimental results.
    Wójcik J; Kujawska T; Nowicki A; Lewin PA
    Ultrasonics; 2008 Dec; 48(8):707-15. PubMed ID: 18474387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave envelopes method for description of nonlinear acoustic wave propagation.
    Wójcik J; Nowicki A; Lewin PA; Bloomfield PE; Kujawska T; Filipczyński L
    Ultrasonics; 2006 Jul; 44(3):310-29. PubMed ID: 16780911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Prior Approach for Room Impulse Response Reconstruction.
    Pezzoli M; Perini D; Bernardini A; Borra F; Antonacci F; Sarti A
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scene-Aware Audio Rendering via Deep Acoustic Analysis.
    Tang Z; Bryan NJ; Li D; Langlois TR; Manocha D
    IEEE Trans Vis Comput Graph; 2020 May; 26(5):1991-2001. PubMed ID: 32070967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.