These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 38176081)

  • 1. Ionically annealed zwitterionic microgels for bioprinting of cartilaginous constructs.
    Surman F; Asadikorayem M; Weber P; Weber D; Zenobi-Wong M
    Biofabrication; 2024 Jan; 16(2):. PubMed ID: 38176081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks.
    Flégeau K; Puiggali-Jou A; Zenobi-Wong M
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35483326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zwitterionic Granular Hydrogel for Cartilage Tissue Engineering.
    Asadikorayem M; Surman F; Weber P; Weber D; Zenobi-Wong M
    Adv Healthc Mater; 2023 Jul; ():e2301831. PubMed ID: 37501337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ 3D bioprinting with bioconcrete bioink.
    Xie M; Shi Y; Zhang C; Ge M; Zhang J; Chen Z; Fu J; Xie Z; He Y
    Nat Commun; 2022 Jun; 13(1):3597. PubMed ID: 35739106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible light-crosslinkable tyramine-conjugated alginate-based microgel bioink for multiple cell-laden 3D artificial organ.
    Lee S; Choi G; Yang YJ; Joo KI; Cha HJ
    Carbohydr Polym; 2023 Aug; 313():120895. PubMed ID: 37182936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip fabrication and in-flow 3D-printing of microgel constructs: from chip to scaffold materials in one integral process.
    Reineke B; Paulus I; Löffelsend S; Yu CH; Vinogradov D; Meyer A; Hazur J; Röder J; Vollmer M; Tamgüney G; Hauschild S; Boccaccini AR; Groll J; Förster S
    Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38471160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Microgel-Templated Porogel (MTP) Bioink for 3D Bioprinting Applications.
    Ouyang L; Wojciechowski JP; Tang J; Guo Y; Stevens MM
    Adv Healthc Mater; 2022 Apr; 11(8):e2200027. PubMed ID: 35037731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembling Microgels via Dynamic Cross-Linking Reaction Improves Printability, Microporosity, Tissue-Adhesion, and Self-Healing of Microgel Bioink for Extrusion Bioprinting.
    Feng Q; Li D; Li Q; Li H; Wang Z; Zhu S; Lin Z; Cao X; Dong H
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15653-15666. PubMed ID: 35344348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embedded Bioprinting of Tissue-like Structures Using κ-Carrageenan Sub-Microgel Medium.
    Zhang H; Zhu T; Luo Y; Xu R; Li G; Hu Z; Cao X; Yao J; Chen Y; Zhu Y; Wu K
    J Vis Exp; 2024 May; (207):. PubMed ID: 38767380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gelatin Methacryloyl Granular Hydrogel Scaffolds: High-throughput Microgel Fabrication, Lyophilization, Chemical Assembly, and 3D Bioprinting.
    Ataie Z; Jaberi A; Kheirabadi S; Risbud A; Sheikhi A
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36571405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cation-crosslinked
    Zhang H; Luo Y; Hu Z; Chen M; Chen S; Yao Y; Yao J; Shao X; Wu K; Zhu Y; Fu J
    Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38198708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput microgel biofabrication via air-assisted co-axial jetting for cell encapsulation, 3D bioprinting, and scaffolding applications.
    Pal V; Singh YP; Gupta D; Alioglu MA; Nagamine M; Kim MH; Ozbolat IT
    Biofabrication; 2023 Apr; 15(3):. PubMed ID: 36927673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of transglutaminase cross-linking process on printability of gelatin microgel-gelatin solution composite bioink.
    Song K; Ren B; Zhai Y; Chai W; Huang Y
    Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34823234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoengineered Granular Hydrogel Bioinks with Preserved Interconnected Microporosity for Extrusion Bioprinting.
    Ataie Z; Kheirabadi S; Zhang JW; Kedzierski A; Petrosky C; Jiang R; Vollberg C; Sheikhi A
    Small; 2022 Sep; 18(37):e2202390. PubMed ID: 35922399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle-Stabilized Emulsion Bioink for Digital Light Processing Based 3D Bioprinting of Porous Tissue Constructs.
    Tao J; Zhu S; Zhou N; Wang Y; Wan H; Zhang L; Tang Y; Pan Y; Yang Y; Zhang J; Liu R
    Adv Healthc Mater; 2022 Jun; 11(12):e2102810. PubMed ID: 35194975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering.
    Bandyopadhyay A; Mandal BB; Bhardwaj N
    J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.