BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38176101)

  • 1. Inulin Can Improve Red Blood Cell Cryopreservation by Promoting Vitrification, Stabilizing Cell Membranes, and Inhibiting Ice Recrystallization.
    Hu Y; Liu X; Zhang W; Chen J; Chen X; Tan S
    ACS Biomater Sci Eng; 2024 Feb; 10(2):851-862. PubMed ID: 38176101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimethylglycine Can Enhance the Cryopreservation of Red Blood Cells by Reducing Ice Formation and Oxidative Damage.
    Hu Y; Liu X; Ekpo MD; Chen J; Chen X; Zhang W; Zhao R; Xie J; He Y; Tan S
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tricine as a Novel Cryoprotectant with Osmotic Regulation, Ice Recrystallization Inhibition and Antioxidant Properties for Cryopreservation of Red Blood Cells.
    Liu X; Hu Y; Zhang W; Yang D; Pan Y; Ekpo MD; Xie J; Zhao R; Tan S
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing.
    Briard JG; Poisson JS; Turner TR; Capicciotti CJ; Acker JP; Ben RN
    Sci Rep; 2016 Mar; 6():23619. PubMed ID: 27021850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural cryoprotectants combinations of l-proline and trehalose for red blood cells cryopreservation.
    Dou M; Lu C; Sun Z; Rao W
    Cryobiology; 2019 Dec; 91():23-29. PubMed ID: 31693877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation.
    Stefanic M; Ward K; Tawfik H; Seemann R; Baulin V; Guo Y; Fleury JB; Drouet C
    Biomaterials; 2017 Sep; 140():138-149. PubMed ID: 28649014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryopreservation of feline red blood cells in liquid nitrogen using glycerol and hydroxyethyl starch.
    Hon M; Thomovsky EJ; Brooks AC; Johnson PA
    J Feline Med Surg; 2020 Apr; 22(4):366-375. PubMed ID: 31232153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane permeabilization of phosphatidylcholine liposomes induced by cryopreservation and vitrification solutions.
    Sydykov B; Oldenhof H; de Oliveira Barros L; Sieme H; Wolkers WF
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):467-474. PubMed ID: 29100892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryopreservation of red blood cells.
    Lagerberg JW
    Methods Mol Biol; 2015; 1257():353-67. PubMed ID: 25428017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical stabilization enhances red blood cell recovery and stability following cryopreservation.
    Wagner CT; Martowicz ML; Livesey SA; Connor J
    Cryobiology; 2002 Oct; 45(2):153-66. PubMed ID: 12482381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hemocompatible cryoprotectant inspired by freezing-tolerant plants.
    Yang J; Sui X; Wen C; Pan C; Zhu Y; Zhang J; Zhang L
    Colloids Surf B Biointerfaces; 2019 Apr; 176():106-114. PubMed ID: 30597407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Cryopreservation Efficacies of Ice Recrystallization Inhibiting Nanogels.
    Dissanayake R; Combita D; Ahmed M
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):45689-45700. PubMed ID: 37729594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of Trehalose Lipids with Dissociative Trehalose Enables Cryopreservation of Human RBCs.
    Wang Y; Gao S; Zhu K; Ren L; Yuan X
    ACS Biomater Sci Eng; 2023 Jan; 9(1):498-507. PubMed ID: 36577138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the application and mechanism of sodium hyaluronate in cryopreservation of red blood cells.
    Liu X; Hu Y; Pan Y; Fang M; Tong Z; Sun Y; Tan S
    Mater Today Bio; 2021 Sep; 12():100156. PubMed ID: 34825160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principles of Ice-Free Cryopreservation by Vitrification.
    Fahy GM; Wowk B
    Methods Mol Biol; 2021; 2180():27-97. PubMed ID: 32797408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effects of liposomes, trehalose, and hydroxyethyl starch for cryopreservation of human erythrocytes.
    Stoll C; Holovati JL; Acker JP; Wolkers WF
    Biotechnol Prog; 2012; 28(2):364-71. PubMed ID: 22275294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving vitrification efficiency of human in vitro matured oocytes by the addition of LEA proteins.
    Li L; Bi X; Wu X; Chen Z; Cao Y; Zhao G
    Hum Reprod; 2024 Jun; 39(6):1275-1290. PubMed ID: 38592717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical modeling of cryoprotectant addition and removal for the cryopreservation of engineered or natural tissues.
    Lawson A; Mukherjee IN; Sambanis A
    Cryobiology; 2012 Feb; 64(1):1-11. PubMed ID: 22142903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small molecule ice recrystallization inhibitors enable freezing of human red blood cells with reduced glycerol concentrations.
    Capicciotti CJ; Kurach JD; Turner TR; Mancini RS; Acker JP; Ben RN
    Sci Rep; 2015 Apr; 5():9692. PubMed ID: 25851700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of two distinct cryoprotectants for cryopreservation of human red blood cell concentrates.
    Korsak J; Goller A; Rzeszotarska A; Pleskacz K
    Cryo Letters; 2014; 35(1):15-21. PubMed ID: 24872153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.