These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38176104)

  • 41. How Far Are We in Combating Marine Oil Spills by Using Phase-Selective Organogelators?
    Vibhute AM; Sureshan KM
    ChemSusChem; 2020 Oct; 13(20):5343-5360. PubMed ID: 32808717
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A robust salt-tolerant superoleophobic chitosan/nanofibrillated cellulose aerogel for highly efficient oil/water separation.
    Zhang H; Li Y; Shi R; Chen L; Fan M
    Carbohydr Polym; 2018 Nov; 200():611-615. PubMed ID: 30177206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Water-Based Route for Dopamine and Reduced Graphene Oxide Aerogel Production.
    Kavak Ö; Can B; Bat E
    ACS Omega; 2023 Dec; 8(49):46728-46737. PubMed ID: 38107889
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polar Solvent-Induced Unprecedented Supergelation of (Un)Weathered Crude Oils at Room Temperature.
    Li J; Huo Y; Zeng H
    Langmuir; 2018 Jul; 34(27):8058-8064. PubMed ID: 29905482
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of synergistic effects incorporating esterified lignin and guar gum composite aerogel for sustained oil spill cleanup.
    Montazeri M; Norouzbeigi R
    Sci Rep; 2024 Jun; 14(1):13892. PubMed ID: 38886286
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultralight and highly efficient oil-water selective aerogel from carboxymethyl chitosan and oxidized β-cyclodextrin for marine oil spill cleanup.
    Tuo Z; Cai P; Xiao H; Pan Y
    Int J Biol Macromol; 2023 Jul; 244():125247. PubMed ID: 37295697
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomimetic, Highly Reusable and Hydrophobic Graphene/Polyvinyl Alcohol/Cellulose Nanofiber Aerogels as Oil-Removing Absorbents.
    Feng P; Wang X; Yang J
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335408
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanically Strong, Low Thermal Conductivity and Improved Thermal Stability Polyvinyl Alcohol-Graphene-Nanocellulose Aerogel.
    Wang X; Xie P; Wan K; Miao Y; Liu Z; Li X; Wang C
    Gels; 2021 Oct; 7(4):. PubMed ID: 34698206
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery.
    He J; Zhao H; Li X; Su D; Zhang F; Ji H; Liu R
    J Hazard Mater; 2018 Mar; 346():199-207. PubMed ID: 29275109
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A functionalized nano-structured cellulosic sorbent aerogel for oil spill cleanup: Synthesis and characterization.
    Bidgoli H; Mortazavi Y; Khodadadi AA
    J Hazard Mater; 2019 Mar; 366():229-239. PubMed ID: 30530014
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stereo-complex polylactide composite aerogel for crude oil adsorption.
    Zhang W; Zhang M; Chen Q; Liu X
    Int J Biol Macromol; 2024 Apr; 263(Pt 1):130283. PubMed ID: 38378113
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Complex Aerogels Generated from Nano-Polysaccharides and Its Derivatives for Oil-Water Separation.
    Yagoub H; Zhu L; Shibraen MHMA; Altam AA; Babiker DMD; Liang S; Jin Y; Yang S
    Polymers (Basel); 2019 Sep; 11(10):. PubMed ID: 31569491
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photothermal hierarchical carbon nanotube/reduced graphene oxide microspherical aerogels with radially orientated microchannels for efficient cleanup of crude oil spills.
    Luo Z; Wang X; Yang D; Zhang S; Zhao T; Qin L; Yu ZZ
    J Colloid Interface Sci; 2020 Jun; 570():61-71. PubMed ID: 32142904
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent advances in carbon nanotube sponge-based sorption technologies for mitigation of marine oil spills.
    Kukkar D; Rani A; Kumar V; Younis SA; Zhang M; Lee SS; Tsang DCW; Kim KH
    J Colloid Interface Sci; 2020 Jun; 570():411-422. PubMed ID: 32199191
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanical Properties of Cellulose Aerogel Composites with and without Crude Oil Filling.
    Paulauskiene T; Sirtaute E; Tadzijevas A; Uebe J
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391465
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monoglyceride-based organogelator for broad-range oil uptake with high capacity.
    Wang D; Niu J; Wang Z; Jin J
    Langmuir; 2015 Feb; 31(5):1670-4. PubMed ID: 25604733
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High Aspect Ratio Carboxylated Cellulose Nanofibers Cross-linked to Robust Aerogels for Superabsorption-Flocculants: Paving Way from Nanoscale to Macroscale.
    Wang D; Yu H; Fan X; Gu J; Ye S; Yao J; Ni Q
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20755-20766. PubMed ID: 29846056
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surface modification of bacterial cellulose aerogels' web-like skeleton for oil/water separation.
    Sai H; Fu R; Xing L; Xiang J; Li Z; Li F; Zhang T
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7373-81. PubMed ID: 25799389
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanocellulose-based composite aerogels toward the environmental protection: Preparation, modification and applications.
    Yang J; Han X; Yang W; Hu J; Zhang C; Liu K; Jiang S
    Environ Res; 2023 Nov; 236(Pt 1):116736. PubMed ID: 37495064
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Micro-cellular polymer foam supported silica aerogel: Eco-friendly tool for petroleum oil spill cleanup.
    Renjith PK; Sarathchandran C; Sivanandan Achary V; Chandramohanakumar N; Sekkar V
    J Hazard Mater; 2021 Aug; 415():125548. PubMed ID: 33721779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.