These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38176146)

  • 1. Study on the mechanism of natural polysaccharides on the deastringent effect of Triphala extract.
    Liu J; Wang P; Huang H; Xie X; Lin J; Zheng Y; Han L; Han X; Zhang D
    Food Chem; 2024 May; 441():138340. PubMed ID: 38176146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Arabic gum on astringency by modulating the polyphenol fraction-protein reaction in model wine.
    Wang S; Ma Z; Zhao P; Du G; Sun X; Wang X
    Food Chem; 2023 Aug; 417():135927. PubMed ID: 36933429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The material basis of astringency and the deastringent effect of polysaccharides: A review.
    Liu J; Xie J; Lin J; Xie X; Fan S; Han X; Zhang DK; Han L
    Food Chem; 2023 Mar; 405(Pt B):134946. PubMed ID: 36410216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbohydrates inhibit salivary proteins precipitation by condensed tannins.
    Soares S; Mateus N; de Freitas V
    J Agric Food Chem; 2012 Apr; 60(15):3966-72. PubMed ID: 22440016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a cell-based quaternary system to unveil the effect of pectic polysaccharides on oral astringency.
    Brandão E; Jesus M; Guerreiro C; Maricato É; Coimbra MA; Mateus N; de Freitas V; Soares S
    Carbohydr Polym; 2024 Jan; 323():121378. PubMed ID: 37940274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microencapsulation of fish oil by casein-pectin complexes and gum arabic microparticles: oxidative stabilisation.
    Vaucher ACDS; Dias PCM; Coimbra PT; Costa IDSM; Marreto RN; Dellamora-Ortiz GM; De Freitas O; Ramos MFS
    J Microencapsul; 2019 Aug; 36(5):459-473. PubMed ID: 31322456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of astringency from persimmon paste via polysaccharide treatment.
    Tsurunaga Y; Takahashi T; Kanou M; Onda M; Ishigaki M
    Heliyon; 2022 Sep; 8(9):e10716. PubMed ID: 36185145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polysaccharide selection and mechanism for prevention of protein-polyphenol haze formation in beverages.
    Wang L; Zhao S; Liao T; Shu X; Guo D; Huang Y; Yang X; Wang Q; Chen X
    J Food Sci; 2020 Nov; 85(11):3776-3785. PubMed ID: 33084074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabinogalactan proteins and polysaccharides compete directly with condensed tannins for saliva proteins influencing astringency perception of Cabernet Sauvignon wines.
    Kuhlman B; Aleixandre-Tudo JL; Moore JP; du Toit W
    Food Chem; 2024 Mar; 435():137625. PubMed ID: 37801763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyphenols, astringency and proline-rich proteins.
    Luck G; Liao H; Murray NJ; Grimmer HR; Warminski EE; Williamson MP; Lilley TH; Haslam E
    Phytochemistry; 1994 Sep; 37(2):357-71. PubMed ID: 7765619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mannoproteins, arabinogalactan protein, rhamnogalacturonan II and their pairwise combinations regulating wine astringency induced by the interaction of proanthocyanidins and proteins.
    Lei X; Wang S; Zhao P; Wang X
    Int J Biol Macromol; 2023 Jan; 224():950-957. PubMed ID: 36306908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery.
    Luo Y; Wang Q
    Int J Biol Macromol; 2014 Mar; 64():353-67. PubMed ID: 24360899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic approach by which polysaccharides inhibit α-amylase/procyanidin aggregation.
    Soares SI; Gonçalves RM; Fernandes I; Mateus N; de Freitas V
    J Agric Food Chem; 2009 May; 57(10):4352-8. PubMed ID: 19378996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel technology to reduce astringency of tea polyphenols extract and its mechanism.
    Wan JY; Long Y; Zhang YL; Xiang Y; Liu SY; Li N; Zhang DK
    Chin Herb Med; 2021 Jul; 13(3):421-429. PubMed ID: 36118929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of gelatin-EGCG-pectin ternary complex: formation mechanism, emulsion stability, and structure.
    Huang X; Tu R; Song H; Dong K; Geng F; Chen L; Huang Q; Wu Y
    J Sci Food Agric; 2023 Feb; 103(3):1442-1453. PubMed ID: 36168822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization.
    Tolun A; Altintas Z; Artik N
    J Biotechnol; 2016 Dec; 239():23-33. PubMed ID: 27720817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physico-chemical stability of astaxanthin nanodispersions prepared with polysaccharides as stabilizing agents.
    Anarjan N; Tan CP
    Int J Food Sci Nutr; 2013 Sep; 64(6):744-8. PubMed ID: 23590613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of addition of hydrocolloids on the textural and structural properties of high-protein intermediate moisture food model systems containing sodium caseinate.
    Li J; Wu Y; Ma Y; Lu N; Regenstein JM; Zhou P
    Food Funct; 2017 Aug; 8(8):2897-2904. PubMed ID: 28740977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase separation behavior of egg yolk suspensions after anionic polysaccharides addition.
    Navidghasemizad S; Temelli F; Wu J
    Carbohydr Polym; 2015 Mar; 117():297-303. PubMed ID: 25498638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing novel oenological tannins from 44 plants sources by assessing astringency and color in model wine.
    Cheng C; Liu P; Zhao P; Du G; Wang S; Liu H; Cao X; Zhao Q; Wang X
    J Sci Food Agric; 2023 Feb; 103(3):1499-1513. PubMed ID: 36189836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.