These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 38176236)
41. Synergetic Effect of Mo-Doped and Oxygen Vacancies Endows Vanadium Oxide with High-Rate and Long-Life for Aqueous Zinc Ion Battery. Chen D; Yang M; Ming Y; Cai W; Shi S; Pan Y; Hu X; Yu R; Wang Z; Fei B Small; 2024 Nov; 20(48):e2405168. PubMed ID: 39235421 [TBL] [Abstract][Full Text] [Related]
42. Cesium-doped ammonium vanadium bronze nanosheets as high capacity aqueous zinc-ion battery cathodes with long cycle life and superb rate capability. Lei X; Du H; Li H; Zhang M; Zhang H; Jin Y; Zhang J Nanoscale; 2023 Nov; 15(46):18928-18938. PubMed ID: 37975826 [TBL] [Abstract][Full Text] [Related]
43. Molten Salt Thermal Treatment Synthesis of S-Doped V Jiang W; Shi H; Shen M; Tang R; Tang Z; Wang JQ ACS Appl Mater Interfaces; 2022 Mar; 14(12):14482-14491. PubMed ID: 35275611 [TBL] [Abstract][Full Text] [Related]
44. Two Birds with One Stone: Boosting Zinc-Ion Insertion/Extraction Kinetics and Suppressing Vanadium Dissolution of V Zhang D; Cao J; Yue Y; Pakornchote T; Bovornratanaraks T; Han J; Zhang X; Qin J; Huang Y ACS Appl Mater Interfaces; 2021 Aug; 13(32):38416-38424. PubMed ID: 34342444 [TBL] [Abstract][Full Text] [Related]
45. A three-dimensional interconnected molybdenum disulfide/multi-walled carbon nanotubes cathode with enlarged interlayer spacing for aqueous zinc-ion storage. Shuai H; Liu R; Li W; Yang X; Lu H; Gao Y; Xu J; Huang K J Colloid Interface Sci; 2023 Jun; 639():292-301. PubMed ID: 36805754 [TBL] [Abstract][Full Text] [Related]
46. Regulating Interlayer-Spacing of Vanadium Phosphates for High-Capacity and Long-Life Aqueous Iron-Ion Batteries. Li C; Xu Y; Deng W; Zhou Y; Guo X; Chen Y; Li R Small; 2024 Feb; 20(6):e2305766. PubMed ID: 37771178 [TBL] [Abstract][Full Text] [Related]
47. Unraveling Energy Storage Performance and Mechanism of Metal-Organic Framework-Derived Copper Vanadium Oxides with Tunable Composition for Aqueous Zinc-Ion Batteries. Kakarla AK; Bandi H; Syed WA; Narsimulu D; Shanthappa R; Yu JS Small Methods; 2024 Sep; ():e2400819. PubMed ID: 39285816 [TBL] [Abstract][Full Text] [Related]
48. Freestanding, Hierarchical, and Porous Bilayered Na Xu G; Liu X; Huang S; Li L; Wei X; Cao J; Yang L; Chu PK ACS Appl Mater Interfaces; 2020 Jan; 12(1):706-716. PubMed ID: 31799821 [TBL] [Abstract][Full Text] [Related]
49. Aging-Responsive Phase Transition of VOOH to V Nagraj R; Puttaswamy R; Yadav P; Beere HK; Upadhyay SN; Sanna Kotrappanavar N; Pakhira S; Ghosh D ACS Appl Mater Interfaces; 2022 Dec; 14(51):56886-56899. PubMed ID: 36516045 [TBL] [Abstract][Full Text] [Related]
50. Oxygen defects engineering and structural strengthening of hydrated vanadium oxide cathode by coating glucose hydrothermal carbon and pre-embedding Mn (II) ion for high-capacity aqueous zinc ion batteries. Liu R; Zhang J; Huang C; Dong C; Xu L; Zhu B; Wang L; Zhang L; Chen L J Colloid Interface Sci; 2024 Jan; 654(Pt A):279-288. PubMed ID: 37844499 [TBL] [Abstract][Full Text] [Related]
51. Proton-self-doped PANI@CC as the cathode for high-performance aqueous zinc-ion battery. Han R; Pan Y; Yin C; Du C; Xiang Y; Wang Y; Zhu H J Colloid Interface Sci; 2023 Nov; 650(Pt A):322-329. PubMed ID: 37413866 [TBL] [Abstract][Full Text] [Related]
52. Highly Flexible K-Intercalated MnO Yang J; Yao G; Li Z; Zhang Y; Wei L; Niu H; Chen Q; Zheng F Small; 2023 Jan; 19(1):e2205544. PubMed ID: 36377466 [TBL] [Abstract][Full Text] [Related]
53. High-Performance Aqueous Zinc-Ion Battery Based on Layered H He P; Quan Y; Xu X; Yan M; Yang W; An Q; He L; Mai L Small; 2017 Dec; 13(47):. PubMed ID: 29152849 [TBL] [Abstract][Full Text] [Related]
54. Highly Stable Polyaniline-Based Cathode Material Enabled by Phosphorene for Zinc-Ion Batteries with Superior Specific Capacity and Cycle Life. Gao X; Shi T; Zu L; Lian H; Cui X; Wang X ACS Appl Mater Interfaces; 2024 May; 16(19):24781-24795. PubMed ID: 38695117 [TBL] [Abstract][Full Text] [Related]
55. A High-Rate and Ultrastable Aqueous Zinc-Ion Battery with a Novel MgV Wang X; Zhang Z; Xiong S; Tian F; Feng Z; Jia Y; Feng J; Xi B Small; 2021 May; 17(20):e2100318. PubMed ID: 33864351 [TBL] [Abstract][Full Text] [Related]
56. Oxygenated copper vanadium selenide composite nanostructures as a cathode material for zinc-ion batteries with high stability up to 10 000 cycles. Narsimulu D; Krishna BNV; Shanthappa R; Yu JS Nanoscale; 2023 Feb; 15(8):3978-3990. PubMed ID: 36723257 [TBL] [Abstract][Full Text] [Related]
57. Polyvinylpyrrolidone-Intercalated Mn Wang Y; Zhao M; Gao G; Zheng C; He D; Wang C; Diao G Small Methods; 2023 Oct; 7(10):e2300606. PubMed ID: 37452266 [TBL] [Abstract][Full Text] [Related]
58. Reticular V Tian B; Tang W; Su C; Li Y ACS Appl Mater Interfaces; 2018 Jan; 10(1):642-650. PubMed ID: 29256595 [TBL] [Abstract][Full Text] [Related]
59. Al Xu J; Zhang Y; Liu C; Cheng H; Cai X; Jia D; Lin H Small; 2022 Nov; 18(47):e2204180. PubMed ID: 36228084 [TBL] [Abstract][Full Text] [Related]