These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 38176329)
1. PA-Net: A phase attention network fusing venous and arterial phase features of CT images for liver tumor segmentation. Liu Z; Hou J; Pan X; Zhang R; Shi Z Comput Methods Programs Biomed; 2024 Feb; 244():107997. PubMed ID: 38176329 [TBL] [Abstract][Full Text] [Related]
2. PA-ResSeg: A phase attention residual network for liver tumor segmentation from multiphase CT images. Xu Y; Cai M; Lin L; Zhang Y; Hu H; Peng Z; Zhang Q; Chen Q; Mao X; Iwamoto Y; Han XH; Chen YW; Tong R Med Phys; 2021 Jul; 48(7):3752-3766. PubMed ID: 33950526 [TBL] [Abstract][Full Text] [Related]
3. Joint segmentation of tumors in 3D PET-CT images with a network fusing multi-view and multi-modal information. Zheng H; Zou W; Hu N; Wang J Phys Med Biol; 2024 Oct; 69(20):. PubMed ID: 39317235 [No Abstract] [Full Text] [Related]
4. MSRA-Net: Tumor segmentation network based on Multi-scale Residual Attention. Wu Y; Jiang H; Pang W Comput Biol Med; 2023 May; 158():106818. PubMed ID: 36966557 [TBL] [Abstract][Full Text] [Related]
5. MFCNet: A multi-modal fusion and calibration networks for 3D pancreas tumor segmentation on PET-CT images. Wang F; Cheng C; Cao W; Wu Z; Wang H; Wei W; Yan Z; Liu Z Comput Biol Med; 2023 Mar; 155():106657. PubMed ID: 36791551 [TBL] [Abstract][Full Text] [Related]
6. A modality-collaborative convolution and transformer hybrid network for unpaired multi-modal medical image segmentation with limited annotations. Liu H; Zhuang Y; Song E; Xu X; Ma G; Cetinkaya C; Hung CC Med Phys; 2023 Sep; 50(9):5460-5478. PubMed ID: 36864700 [TBL] [Abstract][Full Text] [Related]
7. Tumor conspicuity enhancement-based segmentation model for liver tumor segmentation and RECIST diameter measurement in non-contrast CT images. Liu H; Zhou Y; Gou S; Luo Z Comput Biol Med; 2024 May; 174():108420. PubMed ID: 38613896 [TBL] [Abstract][Full Text] [Related]
8. Attention Connect Network for Liver Tumor Segmentation from CT and MRI Images. Shao J; Luan S; Ding Y; Xue X; Zhu B; Wei W Technol Cancer Res Treat; 2024; 23():15330338231219366. PubMed ID: 38179668 [No Abstract] [Full Text] [Related]
9. HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images. Kushnure DT; Talbar SN Comput Methods Programs Biomed; 2022 Jan; 213():106501. PubMed ID: 34752959 [TBL] [Abstract][Full Text] [Related]
10. Multi-phase features interaction transformer network for liver tumor segmentation and microvascular invasion assessment in contrast-enhanced CT. Zhang W; Tao Y; Huang Z; Li Y; Chen Y; Song T; Ma X; Zhang Y Math Biosci Eng; 2024 Apr; 21(4):5735-5761. PubMed ID: 38872556 [TBL] [Abstract][Full Text] [Related]
11. Pulmonary arteries segmentation from CT images using PA-Net with attention module and contour loss. Yuan C; Song S; Yang J; Sun Y; Yang B; Xu L Med Phys; 2023 Aug; 50(8):4887-4898. PubMed ID: 36752170 [TBL] [Abstract][Full Text] [Related]
12. MG-Net: Multi-level global-aware network for thymoma segmentation. Li J; Sun W; von Deneen KM; Fan X; An G; Cui G; Zhang Y Comput Biol Med; 2023 Mar; 155():106635. PubMed ID: 36791547 [TBL] [Abstract][Full Text] [Related]
13. 3D Multi-Attention Guided Multi-Task Learning Network for Automatic Gastric Tumor Segmentation and Lymph Node Classification. Zhang Y; Li H; Du J; Qin J; Wang T; Chen Y; Liu B; Gao W; Ma G; Lei B IEEE Trans Med Imaging; 2021 Jun; 40(6):1618-1631. PubMed ID: 33646948 [TBL] [Abstract][Full Text] [Related]
14. Spatial feature fusion convolutional network for liver and liver tumor segmentation from CT images. Liu T; Liu J; Ma Y; He J; Han J; Ding X; Chen CT Med Phys; 2021 Jan; 48(1):264-272. PubMed ID: 33159809 [TBL] [Abstract][Full Text] [Related]
15. Tumor attention networks: Better feature selection, better tumor segmentation. Pang S; Du A; Orgun MA; Wang Y; Yu Z Neural Netw; 2021 Aug; 140():203-222. PubMed ID: 33780873 [TBL] [Abstract][Full Text] [Related]
16. MRLA-Net: A tumor segmentation network embedded with a multiple receptive-field lesion attention module in PET-CT images. Zhou Y; Jiang H; Diao Z; Tong G; Luan Q; Li Y; Li X Comput Biol Med; 2023 Feb; 153():106538. PubMed ID: 36646023 [TBL] [Abstract][Full Text] [Related]
17. MSFR-Net: Multi-modality and single-modality feature recalibration network for brain tumor segmentation. Li X; Jiang Y; Li M; Zhang J; Yin S; Luo H Med Phys; 2023 Apr; 50(4):2249-2262. PubMed ID: 35962724 [TBL] [Abstract][Full Text] [Related]
18. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup. Liu Y; Zhang M; Zhong Z; Zeng X Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788 [TBL] [Abstract][Full Text] [Related]
19. Automatic liver tumor segmentation used the cascade multi-scale attention architecture method based on 3D U-Net. Wu Y; Shen H; Tan Y; Shi Y Int J Comput Assist Radiol Surg; 2022 Oct; 17(10):1915-1922. PubMed ID: 35672595 [TBL] [Abstract][Full Text] [Related]
20. TMSF-Net: Multi-series fusion network with treeconnect for colorectal tumor segmentation. Chen C; Zhou K; Wang H; Lu Y; Wang Z; Xiao R; Lu T Comput Methods Programs Biomed; 2022 Mar; 215():106613. PubMed ID: 34998166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]