These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38176573)

  • 1. Aminoacylase efficiently hydrolyses fatty acid amino acid conjugates of Helicoverpa armigera potentially to increase the pool of glutamine.
    Kallure GS; Sahoo SS; Kale RS; Barvkar VT; Kontham R; Giri AP
    Insect Biochem Mol Biol; 2024 Feb; 165():104070. PubMed ID: 38176573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consumption of gossypol increases fatty acid-amino acid conjugates in the cotton pests Helicoverpa armigera and Heliothis virescens.
    Krempl C; Joußen N; Reichelt M; Kai M; Vogel H; Heckel DG
    Arch Insect Biochem Physiol; 2021 Nov; 108(3):e21843. PubMed ID: 34490676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expressional divergence of the fatty acid-amino acid conjugate-hydrolyzing aminoacylase 1 (L-ACY-1) in Helicoverpa armigera and Helicoverpa assulta.
    Cheng Q; Gu S; Liu Z; Wang CZ; Li X
    Sci Rep; 2017 Aug; 7(1):8721. PubMed ID: 28821781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A lepidopteran aminoacylase (L-ACY-1) in Heliothis virescens (Lepidoptera: Noctuidae) gut lumen hydrolyzes fatty acid-amino acid conjugates, elicitors of plant defense.
    Kuhns EH; Seidl-Adams I; Tumlinson JH
    Insect Biochem Mol Biol; 2012 Jan; 42(1):32-40. PubMed ID: 22056272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars.
    Yoshinaga N; Alborn HT; Nakanishi T; Suckling DM; Nishida R; Tumlinson JH; Mori N
    J Chem Ecol; 2010 Mar; 36(3):319-25. PubMed ID: 20195891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heliothine caterpillars differ in abundance of a gut lumen aminoacylase (L-ACY-1)-Suggesting a relationship between host preference and fatty acid amino acid conjugate metabolism.
    Kuhns EH; Seidl-Adams I; Tumlinson JH
    J Insect Physiol; 2012 Mar; 58(3):408-12. PubMed ID: 22266147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active role of fatty acid amino acid conjugates in nitrogen metabolism in Spodoptera litura larvae.
    Yoshinaga N; Aboshi T; Abe H; Nishida R; Alborn HT; Tumlinson JH; Mori N
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):18058-63. PubMed ID: 18997016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Levels of Fatty Acid-Amino Acid Conjugates in the Oral Secretions of Lepidopteran Larvae Account for the Different Profiles of Volatiles.
    Ling X; Gu S; Tian C; Guo H; Degen T; Turlings TCJ; Ge F; Sun Y
    Pest Manag Sci; 2021 Sep; 77(9):3970-3979. PubMed ID: 33866678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survey of Sensitivity to Fatty Acid-Amino Acid Conjugates in the Solanaceae.
    Grissett L; Ali A; Coble AM; Logan K; Washington B; Mateson A; McGee K; Nkrumah Y; Jacobus L; Abraham E; Hann C; Bequette CJ; Hind SR; Schmelz EA; Stratmann JW
    J Chem Ecol; 2020 Mar; 46(3):330-343. PubMed ID: 31989490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological function and ecological aspects of fatty acid-amino acid conjugates in insects.
    Yoshinaga N
    Biosci Biotechnol Biochem; 2016 Jul; 80(7):1274-82. PubMed ID: 26940831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant volatile eliciting FACs in lepidopteran caterpillars, fruit flies, and crickets: a convergent evolution or phylogenetic inheritance?
    Yoshinaga N; Abe H; Morita S; Yoshida T; Aboshi T; Fukui M; Tumlinson JH; Mori N
    Front Physiol; 2014; 5():121. PubMed ID: 24744735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated Transcriptomic and Proteomic Analyses Suggest the Participation of Endogenous Protease Inhibitors in the Regulation of Protease Gene Expression in
    Lomate PR; Dewangan V; Mahajan NS; Kumar Y; Kulkarni A; Wang L; Saxena S; Gupta VS; Giri AP
    Mol Cell Proteomics; 2018 Jul; 17(7):1324-1336. PubMed ID: 29661852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary influence on modulation of Helicoverpa armigera oral secretion composition leading to differential regulation of tomato plant defense.
    Kallure GS; Shinde BA; Barvkar VT; Kumari A; Giri AP
    Plant Sci; 2022 Jan; 314():111120. PubMed ID: 34895549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic analysis of salivary gland and proteomic analysis of oral secretion in Helicoverpa armigera under cotton plant leaves, gossypol, and tannin stresses.
    Zheng S; Luo J; Zhu X; Gao X; Hua H; Cui J
    Genomics; 2022 Mar; 114(2):110267. PubMed ID: 35032617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gossypol toxicity and detoxification in Helicoverpa armigera and Heliothis virescens.
    Krempl C; Heidel-Fischer HM; Jiménez-Alemán GH; Reichelt M; Menezes RC; Boland W; Vogel H; Heckel DG; Joußen N
    Insect Biochem Mol Biol; 2016 Nov; 78():69-77. PubMed ID: 27687846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae.
    Srinivasan A; Giri AP; Harsulkar AM; Gatehouse JA; Gupta VS
    Plant Mol Biol; 2005 Feb; 57(3):359-74. PubMed ID: 15830127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of sex pheromone composition and biosynthesis in Helicoverpa armigera, H. assulta and their hybrid.
    Wang HL; Zhao CH; Wang CZ
    Insect Biochem Mol Biol; 2005 Jun; 35(6):575-83. PubMed ID: 15857763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive regulation of detoxification enzymes in Helicoverpa armigera to different host plants.
    Jin M; Liao C; Fu X; Holdbrook R; Wu K; Xiao Y
    Insect Mol Biol; 2019 Oct; 28(5):628-636. PubMed ID: 30834601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of volicitin-related compounds from the regurgitant of lepidopteran caterpillars.
    Mori N; Yoshinaga N; Sawada Y; Fukui M; Shimoda M; Fujisaki K; Nishida R; Kuwahara Y
    Biosci Biotechnol Biochem; 2003 May; 67(5):1168-71. PubMed ID: 12834303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and Tissue-Specific Expression of a Chitin Deacetylase Gene from Helicoverpa armigera (Lepidoptera: Noctuidae) and Its Response to Bacillus thuringiensis.
    Han G; Li X; Zhang T; Zhu X; Li J
    J Insect Sci; 2015; 15(1):. PubMed ID: 26163665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.