These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38176895)
1. Proton Transfer via π-Interactions from Pyridine Provides a Facilitated Route for Transfer of CO Zambri MA; Kluger R J Am Chem Soc; 2024 Jan; 146(2):1403-1409. PubMed ID: 38176895 [TBL] [Abstract][Full Text] [Related]
2. Decarboxylation, CO2 and the reversion problem. Kluger R Acc Chem Res; 2015 Nov; 48(11):2843-9. PubMed ID: 26528892 [TBL] [Abstract][Full Text] [Related]
3. Accelerating unimolecular decarboxylation by preassociated acid catalysis in thiamin-derived intermediates: implicating Brønsted acids as carbanion traps in enzymes. Kluger R; Ikeda G; Hu Q; Cao P; Drewry J J Am Chem Soc; 2006 Dec; 128(49):15856-64. PubMed ID: 17147398 [TBL] [Abstract][Full Text] [Related]
4. Making thiamin work faster: acid-promoted separation of carbon dioxide. Hu Q; Kluger R J Am Chem Soc; 2005 Sep; 127(35):12242-3. PubMed ID: 16131200 [TBL] [Abstract][Full Text] [Related]
5. Base-catalyzed decarboxylation of mandelylthiamin: direct formation of bicarbonate as an alternative to formation of CO2. Howe GW; Bielecki M; Kluger R J Am Chem Soc; 2012 Dec; 134(51):20621-3. PubMed ID: 23215448 [TBL] [Abstract][Full Text] [Related]
6. Competing Protonation and Halide Elimination as a Probe of the Character of Thiamin-Derived Reactive Intermediates. Bielecki M; Howe GW; Kluger R Biochemistry; 2019 Aug; 58(34):3566-3571. PubMed ID: 31385510 [TBL] [Abstract][Full Text] [Related]
7. Charge Dispersion and Its Effects on the Reactivity of Thiamin-Derived Breslow Intermediates. Bielecki M; Howe GW; Kluger R Biochemistry; 2018 Jul; 57(26):3867-3872. PubMed ID: 29856601 [TBL] [Abstract][Full Text] [Related]
8. Reactivity of intermediates in benzoylformate decarboxylase: avoiding the path to destruction. Hu Q; Kluger R J Am Chem Soc; 2002 Dec; 124(50):14858-9. PubMed ID: 12475322 [TBL] [Abstract][Full Text] [Related]
9. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO Fujita E; Grills DC; Manbeck GF; Polyansky DE Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133 [TBL] [Abstract][Full Text] [Related]
10. Carbon Kinetic Isotope Effects and the Mechanisms of Acid-Catalyzed Decarboxylation of 2,4-Dimethoxybenzoic Acid and CO Vandersteen AA; Howe GW; Sherwood Lollar B; Kluger R J Am Chem Soc; 2017 Oct; 139(42):15049-15053. PubMed ID: 28982238 [TBL] [Abstract][Full Text] [Related]
11. Intermolecular Proton Transfer Enabled Reactive CO Li B; Fu Y; Yang Z; Dai S; Jiang DE J Phys Chem B; 2024 Oct; 128(41):10207-10213. PubMed ID: 39356838 [TBL] [Abstract][Full Text] [Related]
12. Generation of regiospecific carbanions under electrospray ionisation conditions and their selectivity in ion-molecule reactions with CO2. Kumar MK; Sateesh B; Prabhakar S; Sastry GN; Vairamani M Rapid Commun Mass Spectrom; 2006; 20(6):987-93. PubMed ID: 16479549 [TBL] [Abstract][Full Text] [Related]
13. Unexpected tautomeric equilibria of the carbanion-enamine intermediate in pyruvate oxidase highlight unrecognized chemical versatility of thiamin. Meyer D; Neumann P; Koers E; Sjuts H; Lüdtke S; Sheldrick GM; Ficner R; Tittmann K Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10867-72. PubMed ID: 22730460 [TBL] [Abstract][Full Text] [Related]
14. Thiamin deprotonation mechanism. Carbanion development stabilized by the LUMOs of thiazolium and pyrimidylimine working in tandem and release governed by a H-bond switch. DuPré DB; Wong JL J Phys Chem A; 2007 Mar; 111(11):2172-81. PubMed ID: 17388265 [TBL] [Abstract][Full Text] [Related]
15. Catalyzing separation of carbon dioxide in thiamin diphosphate-promoted decarboxylation. Kluger R; Rathgeber S FEBS J; 2008 Dec; 275(24):6089-100. PubMed ID: 19016847 [TBL] [Abstract][Full Text] [Related]
16. Protein-enhanced decarboxylation of the covalent intermediate in benzoylformate decarboxylase--Desolvation or acid catalysis? Kluger R; Yu D Bioorg Chem; 2006 Dec; 34(6):337-44. PubMed ID: 16996103 [TBL] [Abstract][Full Text] [Related]
17. Carbanion Translocations via Intramolecular Proton Transfers: A Quantum Chemical Study. Wang Y; Cai PJ; Yu ZX J Org Chem; 2017 May; 82(9):4604-4612. PubMed ID: 28414224 [TBL] [Abstract][Full Text] [Related]
18. Proton transfer from C-6 of uridine 5'-monophosphate catalyzed by orotidine 5'-monophosphate decarboxylase: formation and stability of a vinyl carbanion intermediate and the effect of a 5-fluoro substituent. Tsang WY; Wood BM; Wong FM; Wu W; Gerlt JA; Amyes TL; Richard JP J Am Chem Soc; 2012 Sep; 134(35):14580-94. PubMed ID: 22812629 [TBL] [Abstract][Full Text] [Related]
19. Internal return of carbon dioxide in decarboxylation: catalysis of separation and 12C/13C kinetic isotope effects. Mundle SO; Rathgeber S; Lacrampe-Couloume G; Sherwood Lollar B; Kluger R J Am Chem Soc; 2009 Aug; 131(33):11638-9. PubMed ID: 19642680 [TBL] [Abstract][Full Text] [Related]
20. Origin of Free Energy Barriers of Decarboxylation and the Reverse Process of CO Zhou S; Nguyen BT; Richard JP; Kluger R; Gao J J Am Chem Soc; 2021 Jan; 143(1):137-141. PubMed ID: 33375792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]