These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38176895)
21. The reactivity of lactyl-oxythiamin implies the role of the amino-pyrimidine in thiamin catalyzed decarboxylation. Heidari Y; Howe GW; Kluger R Bioorg Chem; 2016 Dec; 69():153-158. PubMed ID: 27816798 [TBL] [Abstract][Full Text] [Related]
22. Molecular dynamics simulations of the intramolecular proton transfer and carbanion stabilization in the pyridoxal 5'-phosphate dependent enzymes L-dopa decarboxylase and alanine racemase. Lin YL; Gao J; Rubinstein A; Major DT Biochim Biophys Acta; 2011 Nov; 1814(11):1438-46. PubMed ID: 21600315 [TBL] [Abstract][Full Text] [Related]
23. Double duty for a conserved glutamate in pyruvate decarboxylase: evidence of the participation in stereoelectronically controlled decarboxylation and in protonation of the nascent carbanion/enamine intermediate . Meyer D; Neumann P; Parthier C; Friedemann R; Nemeria N; Jordan F; Tittmann K Biochemistry; 2010 Sep; 49(37):8197-212. PubMed ID: 20715795 [TBL] [Abstract][Full Text] [Related]
24. Lithium-stabilized nucleophilic addition of thiamin to a ketone provides an efficient route to mandelylthiamin, a critical pre-decarboxylation intermediate. Bielecki M; Howe GW; Kluger R Bioorg Chem; 2015 Oct; 62():124-9. PubMed ID: 26333207 [TBL] [Abstract][Full Text] [Related]
25. Synthesis and interconversions of digold(I), tetragold(I), digold(II), gold(I)-gold(III) and digold(III) complexes of fluorine-substituted aryl carbanions. Bennett MA; Bhargava SK; Mirzadeh N; Privér SH; Wagler J; Willis AC Dalton Trans; 2009 Sep; (36):7537-51. PubMed ID: 19727476 [TBL] [Abstract][Full Text] [Related]
26. Facilitating Molecular Activation and Proton Feeding by Dual Active Sites on Polymeric Carbon Nitride for Efficient CO An X; Tang Q; Lan H; Liu H; Yu X; Qu J; Lin H; Ye J Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202212706. PubMed ID: 36138516 [TBL] [Abstract][Full Text] [Related]
27. Stabilities of Uracil and Pyridone-Based Carbanions: A Systematic Study in the Gas Phase and Solution and Implications for the Mechanism of Orotidine-5'-Monophosphate Decarboxylase. Senger NA; Bliss CE; Keeffe JR; Gronert S; Wu W Tetrahedron; 2013 Jul; 69(26):5287-5292. PubMed ID: 24072938 [TBL] [Abstract][Full Text] [Related]
28. Enzymatic Catalysis of Proton Transfer and Decarboxylation Reactions. Richard JP Pure Appl Chem; 2011 Jul; 83(8):1555-1565. PubMed ID: 23505326 [TBL] [Abstract][Full Text] [Related]
29. A common carbanion intermediate in the recombination and proton-catalysed disproportionation of the carboxyl radical anion, CO2*-, in aqueous solution. Flyunt R; Schuchmann MN; von Sonntag C Chemistry; 2001; 7(4):796-9. PubMed ID: 11288870 [TBL] [Abstract][Full Text] [Related]
30. Hydrolytic decarboxylation of carboxylic acids and the formation of protonated carbonic acid. Mundle SO; Lacrampe-Couloume G; Lollar BS; Kluger R J Am Chem Soc; 2010 Feb; 132(7):2430-6. PubMed ID: 20121187 [TBL] [Abstract][Full Text] [Related]
31. Mechanism of homogeneous reduction of CO2 by pyridine: proton relay in aqueous solvent and aromatic stabilization. Lim CH; Holder AM; Musgrave CB J Am Chem Soc; 2013 Jan; 135(1):142-54. PubMed ID: 23214714 [TBL] [Abstract][Full Text] [Related]
32. How Acid-Catalyzed Decarboxylation of 2,4-Dimethoxybenzoic Acid Avoids Formation of Protonated CO2. Howe GW; Vandersteen AA; Kluger R J Am Chem Soc; 2016 Jun; 138(24):7568-73. PubMed ID: 27241436 [TBL] [Abstract][Full Text] [Related]
33. Rates of competing fluoride elimination and iodination from a thiamin-derived Breslow intermediate. Wu N; Kluger R Bioorg Chem; 2022 Mar; 120():105579. PubMed ID: 35030479 [TBL] [Abstract][Full Text] [Related]
34. Water- and acid-mediated excited-state intramolecular proton transfer and decarboxylation reactions of ketoprofen in water-rich and acidic aqueous solutions. Li MD; Yeung CS; Guan X; Ma J; Li W; Ma C; Phillips DL Chemistry; 2011 Sep; 17(39):10935-50. PubMed ID: 21850720 [TBL] [Abstract][Full Text] [Related]
35. The Need for an Alternative to Radicals as the Cause of Fragmentation of a Thiamin-Derived Breslow Intermediate. Bielecki M; Kluger R Angew Chem Int Ed Engl; 2017 May; 56(22):6321-6323. PubMed ID: 28455906 [TBL] [Abstract][Full Text] [Related]
36. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. Schütz A; Golbik R; König S; Hübner G; Tittmann K Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904 [TBL] [Abstract][Full Text] [Related]
37. Homogeneous Electrochemical Reduction of CO Ahmed ME; Rana A; Saha R; Dey S; Dey A Inorg Chem; 2020 Apr; 59(8):5292-5302. PubMed ID: 32267696 [TBL] [Abstract][Full Text] [Related]
38. Fragmentation of the conjugate base of 2-(1-hydroxybenzyl)thiamin: does benzoylformate decarboxylase prevent orbital overlap to avoid it? Hu Q; Kluger R J Am Chem Soc; 2004 Jan; 126(1):68-9. PubMed ID: 14709063 [TBL] [Abstract][Full Text] [Related]
39. CO Suo X; Fu Y; Do-Thanh CL; Qiu LQ; Jiang DE; Mahurin SM; Yang Z; Dai S J Am Chem Soc; 2022 Nov; 144(47):21658-21663. PubMed ID: 36377883 [TBL] [Abstract][Full Text] [Related]