These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38176922)

  • 1. AGL-Net: An Efficient Neural Network for EEG-Based Driver Fatigue Detection.
    Fang W; Tang L; Pan J
    J Integr Neurosci; 2023 Oct; 22(6):146. PubMed ID: 38176922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel deep-learning model based on τ-shaped convolutional network (τNet) with long short-term memory (LSTM) for physiological fatigue detection from EEG and EOG signals.
    He L; Zhang L; Lin X; Qin Y
    Med Biol Eng Comput; 2024 Jun; 62(6):1781-1793. PubMed ID: 38374416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SFT-Net: A Network for Detecting Fatigue From EEG Signals by Combining 4D Feature Flow and Attention Mechanism.
    Gao D; Wang K; Wang M; Zhou J; Zhang Y
    IEEE J Biomed Health Inform; 2024 Aug; 28(8):4444-4455. PubMed ID: 37310832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generative adaptive convolutional neural network with attention mechanism for driver fatigue detection with class-imbalanced and insufficient data.
    He L; Zhang L; Sun Q; Lin X
    Behav Brain Res; 2024 Apr; 464():114898. PubMed ID: 38382711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real driving environment EEG-based detection of driving fatigue using the wavelet scattering network.
    Wang F; Chen D; Yao W; Fu R
    J Neurosci Methods; 2023 Dec; 400():109983. PubMed ID: 37838152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating 3D Convolutional Neural Network with Channel Bottleneck Module for EEG-Based Emotion Recognition.
    Kim S; Kim TS; Lee WH
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning.
    Dar MN; Akram MU; Yuvaraj R; Gul Khawaja S; Murugappan M
    Comput Biol Med; 2022 May; 144():105327. PubMed ID: 35303579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition.
    Cimtay Y; Ekmekcioglu E
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition.
    Xing M; Hu S; Wei B; Lv Z
    J Neurosci Methods; 2022 Jul; 376():109624. PubMed ID: 35588948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LMDA-Net:A lightweight multi-dimensional attention network for general EEG-based brain-computer interfaces and interpretability.
    Miao Z; Zhao M; Zhang X; Ming D
    Neuroimage; 2023 Aug; 276():120209. PubMed ID: 37269957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3DCANN: A Spatio-Temporal Convolution Attention Neural Network for EEG Emotion Recognition.
    Liu S; Wang X; Zhao L; Li B; Hu W; Yu J; Zhang YD
    IEEE J Biomed Health Inform; 2022 Nov; 26(11):5321-5331. PubMed ID: 34033551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on low-power driving fatigue monitoring method based on spiking neural network.
    Gu T; Yao W; Wang F; Fu R
    Exp Brain Res; 2024 Oct; 242(10):2457-2471. PubMed ID: 39177685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG-Based Spatio-Temporal Convolutional Neural Network for Driver Fatigue Evaluation.
    Gao Z; Wang X; Yang Y; Mu C; Cai Q; Dang W; Zuo S
    IEEE Trans Neural Netw Learn Syst; 2019 Sep; 30(9):2755-2763. PubMed ID: 30640634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial-temporal features-based EEG emotion recognition using graph convolution network and long short-term memory.
    Zheng F; Hu B; Zheng X; Zhang Y
    Physiol Meas; 2023 Jun; 44(6):. PubMed ID: 37196649
    [No Abstract]   [Full Text] [Related]  

  • 15. A regression model combined convolutional neural network and recurrent neural network for electroencephalogram-based cross-subject fatigue detection.
    Yuan D; Yue J; Xu H; Wang Y; Zan P; Li C
    Rev Sci Instrum; 2023 Sep; 94(9):. PubMed ID: 37721506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TC-Net: A Transformer Capsule Network for EEG-based emotion recognition.
    Wei Y; Liu Y; Li C; Cheng J; Song R; Chen X
    Comput Biol Med; 2023 Jan; 152():106463. PubMed ID: 36571938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cross-scenario and cross-subject domain adaptation method for driving fatigue detection.
    Luo Y; Liu W; Li H; Lu Y; Lu BL
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38838664
    [No Abstract]   [Full Text] [Related]  

  • 18. Self-Attentive Channel-Connectivity Capsule Network for EEG-Based Driving Fatigue Detection.
    Chen C; Ji Z; Sun Y; Bezerianos A; Thakor N; Wang H
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3152-3162. PubMed ID: 37494165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretable Cross-Subject EEG-Based Emotion Recognition Using Channel-Wise Features.
    Jin L; Kim EY
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fused CNN-LSTM deep learning emotion recognition model using electroencephalography signals.
    Ramzan M; Dawn S
    Int J Neurosci; 2023 Jun; 133(6):587-597. PubMed ID: 34121598
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.