BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38176922)

  • 1. AGL-Net: An Efficient Neural Network for EEG-Based Driver Fatigue Detection.
    Fang W; Tang L; Pan J
    J Integr Neurosci; 2023 Oct; 22(6):146. PubMed ID: 38176922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel deep-learning model based on τ-shaped convolutional network (τNet) with long short-term memory (LSTM) for physiological fatigue detection from EEG and EOG signals.
    He L; Zhang L; Lin X; Qin Y
    Med Biol Eng Comput; 2024 Jun; 62(6):1781-1793. PubMed ID: 38374416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SFT-Net: A Network for Detecting Fatigue From EEG Signals by Combining 4D Feature Flow and Attention Mechanism.
    Gao D; Wang K; Wang M; Zhou J; Zhang Y
    IEEE J Biomed Health Inform; 2023 Jun; PP():. PubMed ID: 37310832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generative adaptive convolutional neural network with attention mechanism for driver fatigue detection with class-imbalanced and insufficient data.
    He L; Zhang L; Sun Q; Lin X
    Behav Brain Res; 2024 Apr; 464():114898. PubMed ID: 38382711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real driving environment EEG-based detection of driving fatigue using the wavelet scattering network.
    Wang F; Chen D; Yao W; Fu R
    J Neurosci Methods; 2023 Dec; 400():109983. PubMed ID: 37838152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating 3D Convolutional Neural Network with Channel Bottleneck Module for EEG-Based Emotion Recognition.
    Kim S; Kim TS; Lee WH
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning.
    Dar MN; Akram MU; Yuvaraj R; Gul Khawaja S; Murugappan M
    Comput Biol Med; 2022 May; 144():105327. PubMed ID: 35303579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition.
    Cimtay Y; Ekmekcioglu E
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition.
    Xing M; Hu S; Wei B; Lv Z
    J Neurosci Methods; 2022 Jul; 376():109624. PubMed ID: 35588948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LMDA-Net:A lightweight multi-dimensional attention network for general EEG-based brain-computer interfaces and interpretability.
    Miao Z; Zhao M; Zhang X; Ming D
    Neuroimage; 2023 Aug; 276():120209. PubMed ID: 37269957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3DCANN: A Spatio-Temporal Convolution Attention Neural Network for EEG Emotion Recognition.
    Liu S; Wang X; Zhao L; Li B; Hu W; Yu J; Zhang YD
    IEEE J Biomed Health Inform; 2022 Nov; 26(11):5321-5331. PubMed ID: 34033551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG-Based Spatio-Temporal Convolutional Neural Network for Driver Fatigue Evaluation.
    Gao Z; Wang X; Yang Y; Mu C; Cai Q; Dang W; Zuo S
    IEEE Trans Neural Netw Learn Syst; 2019 Sep; 30(9):2755-2763. PubMed ID: 30640634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification.
    Li L; Sun N
    Comput Intell Neurosci; 2022; 2022():8187009. PubMed ID: 35571721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial-temporal features-based EEG emotion recognition using graph convolution network and long short-term memory.
    Zheng F; Hu B; Zheng X; Zhang Y
    Physiol Meas; 2023 Jun; 44(6):. PubMed ID: 37196649
    [No Abstract]   [Full Text] [Related]  

  • 15. A regression model combined convolutional neural network and recurrent neural network for electroencephalogram-based cross-subject fatigue detection.
    Yuan D; Yue J; Xu H; Wang Y; Zan P; Li C
    Rev Sci Instrum; 2023 Sep; 94(9):. PubMed ID: 37721506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TC-Net: A Transformer Capsule Network for EEG-based emotion recognition.
    Wei Y; Liu Y; Li C; Cheng J; Song R; Chen X
    Comput Biol Med; 2023 Jan; 152():106463. PubMed ID: 36571938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cross-scenario and cross-subject domain adaptation method for driving fatigue detection.
    Luo Y; Liu W; Li H; Lu Y; Lu BL
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38838664
    [No Abstract]   [Full Text] [Related]  

  • 18. Self-Attentive Channel-Connectivity Capsule Network for EEG-Based Driving Fatigue Detection.
    Chen C; Ji Z; Sun Y; Bezerianos A; Thakor N; Wang H
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3152-3162. PubMed ID: 37494165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretable Cross-Subject EEG-Based Emotion Recognition Using Channel-Wise Features.
    Jin L; Kim EY
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fused CNN-LSTM deep learning emotion recognition model using electroencephalography signals.
    Ramzan M; Dawn S
    Int J Neurosci; 2023 Jun; 133(6):587-597. PubMed ID: 34121598
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.