BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 38177198)

  • 21. Leveraging diverse cell-death patterns to predict the clinical outcome of immune checkpoint therapy in lung adenocarcinoma: Based on muti-omics analysis and vitro assay.
    Liang H; Li Y; Qu Y; Zhang L
    Oncol Res; 2023; 32(2):393-407. PubMed ID: 38186574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated multi-omic analysis and experiment reveals the role of endoplasmic reticulum stress in lung adenocarcinoma.
    Liu Y; Lin W; Qian H; Yang Y; Zhou X; Wu C; Pan X; Liu Y; Wang G
    BMC Med Genomics; 2024 Jan; 17(1):12. PubMed ID: 38167084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-cell sequencing analysis and transcriptome analysis constructed the macrophage related gene-related signature in lung adenocarcinoma and verified by an independent cohort.
    Li R; Tong R; Zhang Z; Deng M; Wang T; Hou G
    Genomics; 2022 Nov; 114(6):110520. PubMed ID: 36372305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insight of a Metabolic Prognostic Model to Identify Tumor Environment and Drug Vulnerability for Lung Adenocarcinoma.
    Peng SL; Wang R; Zhou YL; Wei W; Zhong GH; Huang XT; Yang S; Liu QD; Liu ZG
    Front Immunol; 2022; 13():872910. PubMed ID: 35812404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SPOCK1, as a potential prognostic and therapeutic biomarker for lung adenocarcinoma, is associated with epithelial-mesenchymal transition and immune evasion.
    Liu Y; Han T; Wu J; Zhou J; Guo J; Miao R; Xu Z; Xing Y; Bai Y; Hu D
    J Transl Med; 2023 Dec; 21(1):909. PubMed ID: 38087364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring exosome data to identify prognostic gene signatures for lung adenocarcinoma.
    Li J; Gao X; Tian S; Tang M; Liu W
    Future Oncol; 2021 Dec; 17(34):4745-4756. PubMed ID: 34658257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of radiotherapy-related autophagy genes in the prognosis and immune infiltration in lung adenocarcinoma.
    Gao J; Lu F; Yan J; Wang R; Xia Y; Wang L; Li L; Chang L; Li W
    Front Immunol; 2022; 13():992626. PubMed ID: 36311724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinical Significance and Immunologic Landscape of a Five-IL(R)-Based Signature in Lung Adenocarcinoma.
    Fan T; Pan S; Yang S; Hao B; Zhang L; Li D; Geng Q
    Front Immunol; 2021; 12():693062. PubMed ID: 34497605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Seven interferon gamma response genes serve as a prognostic risk signature that correlates with immune infiltration in lung adenocarcinoma.
    Yao B; Wang L; Wang H; Bao J; Li Q; Yu F; Zhu W; Zhang L; Li W; Gu Z; Fei K; Zhang P; Zhang F; Huang X
    Aging (Albany NY); 2021 Apr; 13(8):11381-11410. PubMed ID: 33839701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. H2A Histone Family Member Z (H2AFZ) Serves as a Prognostic Biomarker in Lung Adenocarcinoma: Bioinformatic Analysis and Experimental Validation.
    Li Z; Hu M; Qiu J; Feng J; Zhang R; Wu H; Hu G; Ren J
    Med Sci Monit; 2022 Jan; 28():e933447. PubMed ID: 35027526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A ten-gene signature-based risk assessment model predicts the prognosis of lung adenocarcinoma.
    Jiang H; Xu S; Chen C
    BMC Cancer; 2020 Aug; 20(1):782. PubMed ID: 32819300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Guidelines on lung adenocarcinoma prognosis based on immuno-glycolysis-related genes.
    Zhang Y; Qin W; Zhang W; Qin Y; Zhou YL
    Clin Transl Oncol; 2023 Apr; 25(4):959-975. PubMed ID: 36447119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Seven-Gene Signature with Close Immune Correlation Was Identified for Survival Prediction of Lung Adenocarcinoma.
    Zou X; Hu Z; Huang C; Chang J
    Med Sci Monit; 2020 Jul; 26():e924269. PubMed ID: 32613949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive analysis of TPX2-related ceRNA network as prognostic biomarkers in lung adenocarcinoma.
    Huo C; Zhang MY; Li R; Zhou XJ; Liu TT; Li JP; Liu X; Qu YQ
    Int J Med Sci; 2020; 17(16):2427-2439. PubMed ID: 33029085
    [No Abstract]   [Full Text] [Related]  

  • 35. Molecular subtypes of lung adenocarcinoma patients for prognosis and therapeutic response prediction with machine learning on 13 programmed cell death patterns.
    Wei Q; Jiang X; Miao X; Zhang Y; Chen F; Zhang P
    J Cancer Res Clin Oncol; 2023 Oct; 149(13):11351-11368. PubMed ID: 37378675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of Immune-Related Gene Signatures in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma.
    Li N; Wang J; Zhan X
    Front Immunol; 2021; 12():752643. PubMed ID: 34887858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive analysis of a novel signature incorporating lipid metabolism and immune-related genes for assessing prognosis and immune landscape in lung adenocarcinoma.
    Wang Y; Xu J; Fang Y; Gu J; Zhao F; Tang Y; Xu R; Zhang B; Wu J; Fang Z; Li Y
    Front Immunol; 2022; 13():950001. PubMed ID: 36091041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of four metabolic subtypes and key prognostic markers in lung adenocarcinoma based on glycolytic and glutaminolytic pathways.
    Zhang J; Wang X; Song C; Li Q
    BMC Cancer; 2023 Feb; 23(1):152. PubMed ID: 36782138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and validation of a novel redox-related lncRNA prognostic signature in lung adenocarcinoma.
    Ren J; Wang A; Liu J; Yuan Q
    Bioengineered; 2021 Dec; 12(1):4331-4348. PubMed ID: 34338158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of
    Bian T; Zhang W; Wang F; Chu X; Pan X; Ruan J; Yu S; Liu L; Sun H; Qiu H; Li Y; Tang J; Zhao X; Zhang H
    Comb Chem High Throughput Screen; 2023; 26(14):2452-2468. PubMed ID: 37038295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.