BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 38177218)

  • 1. Psychrophiles to control ice-water phase changes in frost-susceptible soils.
    Rahman R; Bheemasetti TV; Govil T; Sani R
    Sci Rep; 2024 Jan; 14(1):477. PubMed ID: 38177218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.
    Duman JG
    J Exp Biol; 2015 Jun; 218(Pt 12):1846-55. PubMed ID: 26085662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture.
    Eskandari A; Leow TC; Rahman MBA; Oslan SN
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33317024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frost fighters: unveiling the potential of microbial antifreeze proteins in biotech innovation.
    Lopes JC; Kinasz CT; Luiz AMC; Kreusch MG; Duarte RTD
    J Appl Microbiol; 2024 Jun; 135(6):. PubMed ID: 38877650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics.
    Drori R; Celik Y; Davies PL; Braslavsky I
    J R Soc Interface; 2014 Sep; 11(98):20140526. PubMed ID: 25008081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LabVIEW-operated novel nanoliter osmometer for ice binding protein investigations.
    Braslavsky I; Drori R
    J Vis Exp; 2013 Feb; (72):e4189. PubMed ID: 23407403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous expression, refolding and functional characterization of two antifreeze proteins from Fragilariopsis cylindrus (Bacillariophyceae).
    Uhlig C; Kabisch J; Palm GJ; Valentin K; Schweder T; Krell A
    Cryobiology; 2011 Dec; 63(3):220-8. PubMed ID: 21884691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Ice-Binding Proteins in Nature.
    DeVries AL
    Methods Mol Biol; 2024; 2730():3-23. PubMed ID: 37943447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.
    Tomalty HE; Walker VK
    Biochem Biophys Res Commun; 2014 Sep; 452(3):636-41. PubMed ID: 25193694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Apoplastic Antifreeze Proteins of
    Short SE; Zamorano M; Aranzaez-Ríos C; Lee-Estevez M; Díaz R; Quiñones J; Ulloa-Rodríguez P; Villalobos EF; Bravo LA; Graether SP; Farías JG
    Biomolecules; 2024 Feb; 14(2):. PubMed ID: 38397411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Antifreeze Peptide Pretreatment on Ice Crystal Size, Drip Loss, Texture, and Volatile Compounds of Frozen Carrots.
    Kong CH; Hamid N; Liu T; Sarojini V
    J Agric Food Chem; 2016 Jun; 64(21):4327-35. PubMed ID: 27138051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking.
    Ekpo MD; Xie J; Hu Y; Liu X; Liu F; Xiang J; Zhao R; Wang B; Tan S
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Annealing condition influences thermal hysteresis of fungal type ice-binding proteins.
    Xiao N; Hanada Y; Seki H; Kondo H; Tsuda S; Hoshino T
    Cryobiology; 2014 Feb; 68(1):159-61. PubMed ID: 24201106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria.
    Mangiagalli M; Bar-Dolev M; Tedesco P; Natalello A; Kaleda A; Brocca S; de Pascale D; Pucciarelli S; Miceli C; Braslavsky I; Lotti M
    FEBS J; 2017 Jan; 284(1):163-177. PubMed ID: 27860412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis.
    Yu SO; Brown A; Middleton AJ; Tomczak MM; Walker VK; Davies PL
    Cryobiology; 2010 Dec; 61(3):327-34. PubMed ID: 20977900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and application of antifreeze proteins from Antarctic bacteria.
    Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM
    Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ice Binding Proteins: Diverse Biological Roles and Applications in Different Types of Industry.
    Białkowska A; Majewska E; Olczak A; Twarda-Clapa A
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32053888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ice growth in supercooled solutions of antifreeze glycoprotein.
    Harrison K; Hallett J; Burcham TS; Feeney RE; Kerr WL; Yeh Y
    Nature; 1987 Jul 16-22; 328(6127):241-3. PubMed ID: 3600804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice.
    Bayer-Giraldi M; Weikusat I; Besir H; Dieckmann G
    Cryobiology; 2011 Dec; 63(3):210-9. PubMed ID: 21906587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.