These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 38177366)
1. A universal graph deep learning interatomic potential for the periodic table. Chen C; Ong SP Nat Comput Sci; 2022 Nov; 2(11):718-728. PubMed ID: 38177366 [TBL] [Abstract][Full Text] [Related]
2. Performance Assessment of Universal Machine Learning Interatomic Potentials: Challenges and Directions for Materials' Surfaces. Focassio B; M Freitas LP; Schleder GR ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38990833 [TBL] [Abstract][Full Text] [Related]
3. Design of New Inorganic Crystals with the Desired Composition Using Deep Learning. Han S; Lee J; Han S; Moosavi SM; Kim J; Park C J Chem Inf Model; 2023 Sep; 63(18):5755-5763. PubMed ID: 37683188 [TBL] [Abstract][Full Text] [Related]
4. Scaling deep learning for materials discovery. Merchant A; Batzner S; Schoenholz SS; Aykol M; Cheon G; Cubuk ED Nature; 2023 Dec; 624(7990):80-85. PubMed ID: 38030720 [TBL] [Abstract][Full Text] [Related]
5. Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network. Selvaratnam B; Koodali RT; Miró P J Chem Inf Model; 2020 Apr; 60(4):1928-1935. PubMed ID: 32053367 [TBL] [Abstract][Full Text] [Related]
6. Predicting energy and stability of known and hypothetical crystals using graph neural network. Pandey S; Qu J; Stevanović V; St John P; Gorai P Patterns (N Y); 2021 Nov; 2(11):100361. PubMed ID: 34820646 [TBL] [Abstract][Full Text] [Related]
7. Physically informed artificial neural networks for atomistic modeling of materials. Pun GPP; Batra R; Ramprasad R; Mishin Y Nat Commun; 2019 May; 10(1):2339. PubMed ID: 31138813 [TBL] [Abstract][Full Text] [Related]
8. Transferable machine learning interatomic potential for carbon hydrogen systems. Faraji S; Liu M Phys Chem Chem Phys; 2024 Aug; 26(34):22346-22358. PubMed ID: 39140158 [TBL] [Abstract][Full Text] [Related]
9. A Machine-Learning-Assisted Crystalline Structure Prediction Framework To Accelerate Materials Discovery. An R; Xie C; Chu D; Li F; Pan S; Yang Z ACS Appl Mater Interfaces; 2024 Jul; 16(28):36658-36666. PubMed ID: 38976617 [TBL] [Abstract][Full Text] [Related]
10. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Batzner S; Musaelian A; Sun L; Geiger M; Mailoa JP; Kornbluth M; Molinari N; Smidt TE; Kozinsky B Nat Commun; 2022 May; 13(1):2453. PubMed ID: 35508450 [TBL] [Abstract][Full Text] [Related]
12. Uncertainty-Quantified Hybrid Machine Learning/Density Functional Theory High Throughput Screening Method for Crystals. Noh J; Gu GH; Kim S; Jung Y J Chem Inf Model; 2020 Apr; 60(4):1996-2003. PubMed ID: 32208718 [TBL] [Abstract][Full Text] [Related]
13. Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials. Schmidt J; Hoffmann N; Wang HC; Borlido P; Carriço PJMA; Cerqueira TFT; Botti S; Marques MAL Adv Mater; 2023 Jun; 35(22):e2210788. PubMed ID: 36949007 [TBL] [Abstract][Full Text] [Related]
14. MAGUS: machine learning and graph theory assisted universal structure searcher. Wang J; Gao H; Han Y; Ding C; Pan S; Wang Y; Jia Q; Wang HT; Xing D; Sun J Natl Sci Rev; 2023 Jul; 10(7):nwad128. PubMed ID: 37332628 [TBL] [Abstract][Full Text] [Related]
15. Deep Learning Total Energies and Orbital Energies of Large Organic Molecules Using Hybridization of Molecular Fingerprints. Rahaman O; Gagliardi A J Chem Inf Model; 2020 Dec; 60(12):5971-5983. PubMed ID: 33118351 [TBL] [Abstract][Full Text] [Related]
16. Harnessing machine learning for efficient large-scale interatomic potential for sildenafil and pharmaceuticals containing H, C, N, O, and S. Nikidis E; Kyriakopoulos N; Tohid R; Kachrimanis K; Kioseoglou J Nanoscale; 2024 Oct; 16(38):18014-18026. PubMed ID: 39252581 [TBL] [Abstract][Full Text] [Related]
17. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
18. Performance and Cost Assessment of Machine Learning Interatomic Potentials. Zuo Y; Chen C; Li X; Deng Z; Chen Y; Behler J; Csányi G; Shapeev AV; Thompson AP; Wood MA; Ong SP J Phys Chem A; 2020 Jan; 124(4):731-745. PubMed ID: 31916773 [TBL] [Abstract][Full Text] [Related]
19. Atomic stiffness for bulk modulus prediction and high-throughput screening of ultraincompressible crystals. Jin R; Yuan X; Gao E Nat Commun; 2023 Jul; 14(1):4258. PubMed ID: 37460465 [TBL] [Abstract][Full Text] [Related]
20. Informing geometric deep learning with electronic interactions to accelerate quantum chemistry. Qiao Z; Christensen AS; Welborn M; Manby FR; Anandkumar A; Miller TF Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2205221119. PubMed ID: 35901215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]