These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 38177392)
1. Symphonizing pileup and full-alignment for deep learning-based long-read variant calling. Zheng Z; Li S; Su J; Leung AW; Lam TW; Luo R Nat Comput Sci; 2022 Dec; 2(12):797-803. PubMed ID: 38177392 [TBL] [Abstract][Full Text] [Related]
2. Benchmarking reveals superiority of deep learning variant callers on bacterial nanopore sequence data. Hall MB; Wick RR; Judd LM; Nguyen AN; Steinig EJ; Xie O; Davies M; Seemann T; Stinear TP; Coin L Elife; 2024 Oct; 13():. PubMed ID: 39388235 [TBL] [Abstract][Full Text] [Related]
3. miniSNV: accurate and fast single nucleotide variant calling from nanopore sequencing data. Cui M; Liu Y; Yu X; Guo H; Jiang T; Wang Y; Liu B Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39331016 [TBL] [Abstract][Full Text] [Related]
4. Clair3-trio: high-performance Nanopore long-read variant calling in family trios with trio-to-trio deep neural networks. Su J; Zheng Z; Ahmed SS; Lam TW; Luo R Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35849103 [TBL] [Abstract][Full Text] [Related]
5. Evaluating the performance of low-frequency variant calling tools for the detection of variants from short-read deep sequencing data. Xiang X; Lu B; Song D; Li J; Shu K; Pu D Sci Rep; 2023 Nov; 13(1):20444. PubMed ID: 37993475 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the Available Variant Calling Tools for Oxford Nanopore Sequencing in Breast Cancer. Helal AA; Saad BT; Saad MT; Mosaad GS; Aboshanab KM Genes (Basel); 2022 Sep; 13(9):. PubMed ID: 36140751 [TBL] [Abstract][Full Text] [Related]
7. Transformation of alignment files improves performance of variant callers for long-read RNA sequencing data. de Souza VBC; Jordan BT; Tseng E; Nelson EA; Hirschi KK; Sheynkman G; Robinson MD Genome Biol; 2023 Apr; 24(1):91. PubMed ID: 37095564 [TBL] [Abstract][Full Text] [Related]
8. Impact of post-alignment processing in variant discovery from whole exome data. Tian S; Yan H; Kalmbach M; Slager SL BMC Bioinformatics; 2016 Oct; 17(1):403. PubMed ID: 27716037 [TBL] [Abstract][Full Text] [Related]
9. Automated filtering of genome-wide large deletions through an ensemble deep learning framework. Hu Y; Mangal S; Zhang L; Zhou X Methods; 2022 Oct; 206():77-86. PubMed ID: 36038049 [TBL] [Abstract][Full Text] [Related]
10. RDscan: A New Method for Improving Germline and Somatic Variant Calling Based on Read Depth Distribution. Lee S; Hong S; Woo J; Lee JH; Kim K; Kim L; Park K; Jung J J Comput Biol; 2022 Sep; 29(9):987-1000. PubMed ID: 35749140 [TBL] [Abstract][Full Text] [Related]
11. Boosting variant-calling performance with multi-platform sequencing data using Clair3-MP. Yu H; Zheng Z; Su J; Lam TW; Luo R BMC Bioinformatics; 2023 Aug; 24(1):308. PubMed ID: 37537536 [TBL] [Abstract][Full Text] [Related]
12. nPoRe: n-polymer realigner for improved pileup-based variant calling. Dunn T; Blaauw D; Das R; Narayanasamy S BMC Bioinformatics; 2023 Mar; 24(1):98. PubMed ID: 36927439 [TBL] [Abstract][Full Text] [Related]
13. Seah YM; Stewart MK; Hoogestraat D; Ryder M; Cookson BT; Salipante SJ; Hoffman NG J Clin Microbiol; 2023 Aug; 61(8):e0184222. PubMed ID: 37428072 [TBL] [Abstract][Full Text] [Related]
14. Vulcan: Improved long-read mapping and structural variant calling via dual-mode alignment. Fu Y; Mahmoud M; Muraliraman VV; Sedlazeck FJ; Treangen TJ Gigascience; 2021 Sep; 10(9):. PubMed ID: 34561697 [TBL] [Abstract][Full Text] [Related]
15. Recalibration of mapping quality scores in Illumina short-read alignments improves SNP detection results in low-coverage sequencing data. Cline E; Wisittipanit N; Boongoen T; Chukeatirote E; Struss D; Eungwanichayapant A PeerJ; 2020; 8():e10501. PubMed ID: 33354434 [TBL] [Abstract][Full Text] [Related]
16. MiST: a new approach to variant detection in deep sequencing datasets. Subramanian S; Di Pierro V; Shah H; Jayaprakash AD; Weisberger I; Shim J; George A; Gelb BD; Sachidanandam R Nucleic Acids Res; 2013 Sep; 41(16):e154. PubMed ID: 23828039 [TBL] [Abstract][Full Text] [Related]
17. Variant callers for next-generation sequencing data: a comparison study. Liu X; Han S; Wang Z; Gelernter J; Yang BZ PLoS One; 2013; 8(9):e75619. PubMed ID: 24086590 [TBL] [Abstract][Full Text] [Related]
18. ECNano: A cost-effective workflow for target enrichment sequencing and accurate variant calling on 4800 clinically significant genes using a single MinION flowcell. Leung AW; Leung HC; Wong CL; Zheng ZX; Lui WW; Luk HM; Lo IF; Luo R; Lam TW BMC Med Genomics; 2022 Mar; 15(1):43. PubMed ID: 35246132 [TBL] [Abstract][Full Text] [Related]
19. DeNovoCNN: a deep learning approach to de novo variant calling in next generation sequencing data. Khazeeva G; Sablauskas K; van der Sanden B; Steyaert W; Kwint M; Rots D; Hinne M; van Gerven M; Yntema H; Vissers L; Gilissen C Nucleic Acids Res; 2022 Sep; 50(17):e97. PubMed ID: 35713566 [TBL] [Abstract][Full Text] [Related]
20. Tool evaluation for the detection of variably sized indels from next generation whole genome and targeted sequencing data. Wang N; Lysenkov V; Orte K; Kairisto V; Aakko J; Khan S; Elo LL PLoS Comput Biol; 2022 Feb; 18(2):e1009269. PubMed ID: 35176018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]