BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38177576)

  • 1. Generative aptamer discovery using RaptGen.
    Iwano N; Adachi T; Aoki K; Nakamura Y; Hamada M
    Nat Comput Sci; 2022 Jun; 2(6):378-386. PubMed ID: 38177576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RaptGen-Assisted Generation of an RNA/DNA Hybrid Aptamer against SARS-CoV-2 Spike Protein.
    Adachi T; Nakamura S; Michishita A; Kawahara D; Yamamoto M; Hamada M; Nakamura Y
    Biochemistry; 2024 Apr; 63(7):906-912. PubMed ID: 38457656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Searching the Sequence Space for Potent Aptamers Using SELEX in Silico.
    Zhou Q; Xia X; Luo Z; Liang H; Shakhnovich E
    J Chem Theory Comput; 2015 Dec; 11(12):5939-46. PubMed ID: 26642994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information.
    Ishida R; Adachi T; Yokota A; Yoshihara H; Aoki K; Nakamura Y; Hamada M
    Nucleic Acids Res; 2020 Aug; 48(14):e82. PubMed ID: 32537639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AptaTrans: a deep neural network for predicting aptamer-protein interaction using pretrained encoders.
    Shin I; Kang K; Kim J; Sel S; Choi J; Lee JW; Kang HY; Song G
    BMC Bioinformatics; 2023 Nov; 24(1):447. PubMed ID: 38012571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving aptamer performance with nucleic acid mimics: de novo and post-SELEX approaches.
    Oliveira R; Pinho E; Sousa AL; DeStefano JJ; Azevedo NF; Almeida C
    Trends Biotechnol; 2022 May; 40(5):549-563. PubMed ID: 34756455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery.
    Hoinka J; Berezhnoy A; Dao P; Sauna ZE; Gilboa E; Przytycka TM
    Nucleic Acids Res; 2015 Jul; 43(12):5699-707. PubMed ID: 25870409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Screening of Pesticide Diazinon-Binding Aptamers Using the Sol-Gel-Coated Nanoporous Membrane-Assisted SELEX Process and Next-Generation Sequencing.
    Lim MC; Lim ES; Lim JA; Choi SW; Chang HJ
    Appl Biochem Biotechnol; 2022 Sep; 194(9):3901-3913. PubMed ID: 35556210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting aptamer sequences that interact with target proteins using an aptamer-protein interaction classifier and a Monte Carlo tree search approach.
    Lee G; Jang GH; Kang HY; Song G
    PLoS One; 2021; 16(6):e0253760. PubMed ID: 34170922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refining the Results of a Classical SELEX Experiment by Expanding the Sequence Data Set of an Aptamer Pool Selected for Protein A.
    Stoltenburg R; Strehlitz B
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29495282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools.
    Dupont DM; Larsen N; Jensen JK; Andreasen PA; Kjems J
    Nucleic Acids Res; 2015 Dec; 43(21):e139. PubMed ID: 26163061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural optimization of an aptamer generated from Ligand-Guided Selection (LIGS) resulted in high affinity variant toward mIgM expressed on Burkitt's lymphoma cell lines.
    Zümrüt HE; Batool S; Van N; George S; Bhandari S; Mallikaratchy P
    Biochim Biophys Acta Gen Subj; 2017 Jul; 1861(7):1825-1832. PubMed ID: 28363693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. APTANI: a computational tool to select aptamers through sequence-structure motif analysis of HT-SELEX data.
    Caroli J; Taccioli C; De La Fuente A; Serafini P; Bicciato S
    Bioinformatics; 2016 Jan; 32(2):161-4. PubMed ID: 26395772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm.
    Torkamanian-Afshar M; Nematzadeh S; Tabarzad M; Najafi A; Lanjanian H; Masoudi-Nejad A
    Mol Divers; 2021 Aug; 25(3):1395-1407. PubMed ID: 33554306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FSBC: fast string-based clustering for HT-SELEX data.
    Kato S; Ono T; Minagawa H; Horii K; Shiratori I; Waga I; Ito K; Aoki T
    BMC Bioinformatics; 2020 Jun; 21(1):263. PubMed ID: 32580745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of DNA aptamer against prostate specific antigen using a genetic algorithm and application to sensing.
    Savory N; Abe K; Sode K; Ikebukuro K
    Biosens Bioelectron; 2010 Dec; 26(4):1386-91. PubMed ID: 20692149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent progress of SELEX methods for screening nucleic acid aptamers.
    Zhu C; Feng Z; Qin H; Chen L; Yan M; Li L; Qu F
    Talanta; 2024 Jan; 266(Pt 1):124998. PubMed ID: 37527564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-SELEX method for aptamer selection against β-casomorphin-7 peptide.
    Parashar A; Bhushan V; Mahanandia NC; Kumar S; Mohanty AK
    J Dairy Sci; 2022 Jul; 105(7):5545-5560. PubMed ID: 35534270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleic acid aptamer application in diagnosis and therapy of colorectal cancer based on cell-SELEX technology.
    Chen C; Zhou S; Cai Y; Tang F
    NPJ Precis Oncol; 2017; 1(1):37. PubMed ID: 29872716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.