These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 38177621)

  • 1. Carbon nanomaterials for sweat-based sensors: a review.
    Ehtesabi H; Kalji SO
    Mikrochim Acta; 2024 Jan; 191(1):77. PubMed ID: 38177621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Two-Dimensional MXene-Based Electrochemical Biosensors for Sweat Analysis.
    Ganesan S; Ramajayam K; Kokulnathan T; Palaniappan A
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent developments in carbon nanomaterial sensors.
    Baptista FR; Belhout SA; Giordani S; Quinn SJ
    Chem Soc Rev; 2015 Jul; 44(13):4433-53. PubMed ID: 25980819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Nanosensors for Sensitization of Sweat Metabolites: From Concept Mapping to Personalized Health Monitoring.
    Das R; Nag S; Banerjee P
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm.
    Kulkarni GS; Zang W; Zhong Z
    Acc Chem Res; 2016 Nov; 49(11):2578-2586. PubMed ID: 27668314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene and Its Derivatives: Synthesis and Application in the Electrochemical Detection of Analytes in Sweat.
    Singh A; Ahmed A; Sharma A; Arya S
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36291046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating Carbon Nanomaterials with Metals for Bio-sensing Applications.
    Sainio S; Leppänen E; Mynttinen E; Palomäki T; Wester N; Etula J; Isoaho N; Peltola E; Koehne J; Meyyappan M; Koskinen J; Laurila T
    Mol Neurobiol; 2020 Jan; 57(1):179-190. PubMed ID: 31520316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotubes: a powerful bridge for conductivity and flexibility in electrochemical glucose sensors.
    Yuwen T; Shu D; Zou H; Yang X; Wang S; Zhang S; Liu Q; Wang X; Wang G; Zhang Y; Zang G
    J Nanobiotechnology; 2023 Sep; 21(1):320. PubMed ID: 37679841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds.
    Adhikari BR; Govindhan M; Chen A
    Sensors (Basel); 2015 Sep; 15(9):22490-508. PubMed ID: 26404304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection.
    Safari M; Moghaddam A; Salehi Moghaddam A; Absalan M; Kruppke B; Ruckdäschel H; Khonakdar HA
    Talanta; 2023 Jun; 258():124399. PubMed ID: 36870153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on nanomaterial-based electrochemical sensors for determination of vanillin in food samples.
    Moradi O
    Food Chem Toxicol; 2022 Oct; 168():113391. PubMed ID: 36041662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achievements and Challenges for Real-Time Sensing of Analytes in Sweat within Wearable Platforms.
    Brothers MC; DeBrosse M; Grigsby CC; Naik RR; Hussain SM; Heikenfeld J; Kim SS
    Acc Chem Res; 2019 Feb; 52(2):297-306. PubMed ID: 30688433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Electrochemical Urea Sensor Based on Surface Molecularly Imprinted Nanotubes for Detection of Human Sweat.
    Liu YL; Liu R; Qin Y; Qiu QF; Chen Z; Cheng SB; Huang WH
    Anal Chem; 2018 Nov; 90(21):13081-13087. PubMed ID: 30272442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Applications of Carbon Nanomaterials for microRNA Electrochemical Sensing.
    Wang J; Wen J; Yan H
    Chem Asian J; 2021 Jan; 16(2):114-128. PubMed ID: 33289286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review.
    Lin T; Xu Y; Zhao A; He W; Xiao F
    Anal Chim Acta; 2022 May; 1207():339461. PubMed ID: 35491033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO
    Gunatilake UB; Garcia-Rey S; Ojeda E; Basabe-Desmonts L; Benito-Lopez F
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37734-37745. PubMed ID: 34340308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable Sensors for Biochemical Sweat Analysis.
    Bandodkar AJ; Jeang WJ; Ghaffari R; Rogers JA
    Annu Rev Anal Chem (Palo Alto Calif); 2019 Jun; 12(1):1-22. PubMed ID: 30786214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials.
    Sanati A; Jalali M; Raeissi K; Karimzadeh F; Kharaziha M; Mahshid SS; Mahshid S
    Mikrochim Acta; 2019 Nov; 186(12):773. PubMed ID: 31720840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review.
    Cernat A; Tertiş M; Săndulescu R; Bedioui F; Cristea A; Cristea C
    Anal Chim Acta; 2015 Jul; 886():16-28. PubMed ID: 26320632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical and Electrochemical Sensors Based on Carbon Nanotubes for the Monitoring of Chemicals in Water-A Review.
    Cho G; Azzouzi S; Zucchi G; Lebental B
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.