These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38177628)

  • 1. Evolving scattering networks for engineering disorder.
    Yu S
    Nat Comput Sci; 2023 Feb; 3(2):128-138. PubMed ID: 38177628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics-based neural network for non-invasive control of coherent light in scattering media.
    d'Arco A; Xia F; Boniface A; Dong J; Gigan S
    Opt Express; 2022 Aug; 30(17):30845-30856. PubMed ID: 36242181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physics-incorporated convolutional recurrent neural networks for source identification and forecasting of dynamical systems.
    Saha P; Dash S; Mukhopadhyay S
    Neural Netw; 2021 Dec; 144():359-371. PubMed ID: 34547672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing Physics-Informed Neural Networks with Architecture Based on Analytical Modification of Numerical Methods by Solving the Problem of Modelling Processes in a Chemical Reactor.
    Tarkhov D; Lazovskaya T; Malykhina G
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Dual-Dimer method for training physics-constrained neural networks with minimax architecture.
    Liu D; Wang Y
    Neural Netw; 2021 Apr; 136():112-125. PubMed ID: 33476947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-fidelity information fusion with concatenated neural networks.
    Pawar S; San O; Vedula P; Rasheed A; Kvamsdal T
    Sci Rep; 2022 Apr; 12(1):5900. PubMed ID: 35393511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural Network Potentials: A Concise Overview of Methods.
    Kocer E; Ko TW; Behler J
    Annu Rev Phys Chem; 2022 Apr; 73():163-186. PubMed ID: 34982580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-consistent determination of long-range electrostatics in neural network potentials.
    Gao A; Remsing RC
    Nat Commun; 2022 Mar; 13(1):1572. PubMed ID: 35322046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperuniformity order metric of Barlow packings.
    Middlemas TM; Stillinger FH; Torquato S
    Phys Rev E; 2019 Feb; 99(2-1):022111. PubMed ID: 30934256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On acoustic fields of complex scatters based on physics-informed neural networks.
    Wang H; Li J; Wang L; Liang L; Zeng Z; Liu Y
    Ultrasonics; 2023 Feb; 128():106872. PubMed ID: 36323059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can a computer "learn" nonlinear chromatography?: Physics-based deep neural networks for simulation and optimization of chromatographic processes.
    Subraveti SG; Li Z; Prasad V; Rajendran A
    J Chromatogr A; 2022 Jun; 1672():463037. PubMed ID: 35462309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Dynamic Heterogeneity in Glass-Forming Liquids by Physics-Inspired Machine Learning.
    Jung G; Biroli G; Berthier L
    Phys Rev Lett; 2023 Jun; 130(23):238202. PubMed ID: 37354408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning physics-consistent particle interactions.
    Han Z; Kammer DS; Fink O
    PNAS Nexus; 2022 Nov; 1(5):pgac264. PubMed ID: 36712322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient-based training and pruning of radial basis function networks with an application in materials physics.
    Määttä J; Bazaliy V; Kimari J; Djurabekova F; Nordlund K; Roos T
    Neural Netw; 2021 Jan; 133():123-131. PubMed ID: 33212359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remaining useful lifetime estimation for discrete power electronic devices using physics-informed neural network.
    Lu Z; Guo C; Liu M; Shi R
    Sci Rep; 2023 Jun; 13(1):10167. PubMed ID: 37349382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning.
    Pan C; Mahmoudabadbozchelou M; Duan X; Benneyan JC; Jamali S; Erb RM
    J Colloid Interface Sci; 2022 Apr; 611():29-38. PubMed ID: 34929436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physics-informed neural networks for transcranial ultrasound wave propagation.
    Wang L; Wang H; Liang L; Li J; Zeng Z; Liu Y
    Ultrasonics; 2023 Jul; 132():107026. PubMed ID: 37137219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explaining the physics of transfer learning in data-driven turbulence modeling.
    Subel A; Guan Y; Chattopadhyay A; Hassanzadeh P
    PNAS Nexus; 2023 Mar; 2(3):pgad015. PubMed ID: 36896127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.