BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 38177676)

  • 21. Cullin-RING E3 Ubiquitin Ligases: Bridges to Destruction.
    Nguyen HC; Wang W; Xiong Y
    Subcell Biochem; 2017; 83():323-347. PubMed ID: 28271482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation.
    Duda DM; Borg LA; Scott DC; Hunt HW; Hammel M; Schulman BA
    Cell; 2008 Sep; 134(6):995-1006. PubMed ID: 18805092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CAND1 enhances deneddylation of CUL1 by COP9 signalosome.
    Min KW; Kwon MJ; Park HS; Park Y; Yoon SK; Yoon JB
    Biochem Biophys Res Commun; 2005 Sep; 334(3):867-74. PubMed ID: 16036220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-Guided Design of Peptides as Tools to Probe the Protein-Protein Interaction between Cullin-2 and Elongin BC Substrate Adaptor in Cullin RING E3 Ubiquitin Ligases.
    Cardote TAF; Ciulli A
    ChemMedChem; 2017 Sep; 12(18):1491-1496. PubMed ID: 28776949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cullin 3-Based Ubiquitin Ligases as Master Regulators of Mammalian Cell Differentiation.
    Dubiel W; Dubiel D; Wolf DA; Naumann M
    Trends Biochem Sci; 2018 Feb; 43(2):95-107. PubMed ID: 29249570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determining the Effects of Neddylation on Cullin-RING Ligase-Dependent Protein Ubiquitination.
    Wang K; Liu X
    Curr Protoc; 2022 Mar; 2(3):e401. PubMed ID: 35316580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural basis for Cullins and RING component inhibition: Targeting E3 ubiquitin pathway conductors for cancer therapeutics.
    Shafique S; Ali W; Kanwal S; Rashid S
    Int J Biol Macromol; 2018 Jan; 106():532-543. PubMed ID: 28802844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases.
    Villeneuve NF; Lau A; Zhang DD
    Antioxid Redox Signal; 2010 Dec; 13(11):1699-712. PubMed ID: 20486766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ubiquitin ligase Cullin-1 associates with chromatin and regulates transcription of specific c-MYC target genes.
    Sweeney MA; Iakova P; Maneix L; Shih FY; Cho HE; Sahin E; Catic A
    Sci Rep; 2020 Aug; 10(1):13942. PubMed ID: 32811853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trade-off and flexibility in the dynamic regulation of the cullin-RING ubiquitin ligase repertoire.
    Straube R; Shah M; Flockerzi D; Wolf DA
    PLoS Comput Biol; 2017 Nov; 13(11):e1005869. PubMed ID: 29149173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CAND1 controls in vivo dynamics of the cullin 1-RING ubiquitin ligase repertoire.
    Wu S; Zhu W; Nhan T; Toth JI; Petroski MD; Wolf DA
    Nat Commun; 2013; 4():1642. PubMed ID: 23535663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins.
    Pierce NW; Lee JE; Liu X; Sweredoski MJ; Graham RL; Larimore EA; Rome M; Zheng N; Clurman BE; Hess S; Shan SO; Deshaies RJ
    Cell; 2013 Mar; 153(1):206-15. PubMed ID: 23453757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex.
    Zheng J; Yang X; Harrell JM; Ryzhikov S; Shim EH; Lykke-Andersen K; Wei N; Sun H; Kobayashi R; Zhang H
    Mol Cell; 2002 Dec; 10(6):1519-26. PubMed ID: 12504026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systemwide disassembly and assembly of SCF ubiquitin ligase complexes.
    Baek K; Scott DC; Henneberg LT; King MT; Mann M; Schulman BA
    Cell; 2023 Apr; 186(9):1895-1911.e21. PubMed ID: 37028429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of Cullin-RING ubiquitin ligase 1 by Spliceosome-associated protein 130 (SAP130).
    Cordero-Espinoza L; Hagen T
    Biol Open; 2013 Aug; 2(8):838-44. PubMed ID: 23951410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellular requirements for bovine immunodeficiency virus Vif-mediated inactivation of bovine APOBEC3 proteins.
    Zhang W; Wang H; Li Z; Liu X; Liu G; Harris RS; Yu XF
    J Virol; 2014 Nov; 88(21):12528-40. PubMed ID: 25142583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neddylation and CAND1 independently stimulate SCF ubiquitin ligase activity in Candida albicans.
    Sela N; Atir-Lande A; Kornitzer D
    Eukaryot Cell; 2012 Jan; 11(1):42-52. PubMed ID: 22080453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rotavirus NSP1 Associates with Components of the Cullin RING Ligase Family of E3 Ubiquitin Ligases.
    Lutz LM; Pace CR; Arnold MM
    J Virol; 2016 Jul; 90(13):6036-48. PubMed ID: 27099313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate.
    Bornstein G; Ganoth D; Hershko A
    Proc Natl Acad Sci U S A; 2006 Aug; 103(31):11515-20. PubMed ID: 16861300
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rotavirus NSP1 Requires Casein Kinase II-Mediated Phosphorylation for Hijacking of Cullin-RING Ligases.
    Davis KA; Morelli M; Patton JT
    mBio; 2017 Aug; 8(4):. PubMed ID: 28851847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.